Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Wednesday, 23 August 2017, 19:00 HKT/SGT
Share:
    

Source: Science and Technology of Advanced Materials
The Game Algorithm that could Improve Materials Design
A new algorithm could help scientists decide the best atomic structures for the materials they design.

Tsukuba, Japan, Aug 23, 2017 - (ACN Newswire) - Designing advanced materials is a complex process, with many potential combinations for precisely placing atoms within a structure. But now, scientists have developed a new tool that helps determine the ideal placements - thanks to an algorithm that identifies the best moves to win computer games, according to a study recently published in the journal Science and Technology of Advanced Materials.

Scientists who design advanced materials, which have applications in silicon microchips or optical fibers, for example, often struggle to determine how to position atoms within a crystal structure to achieve a targeted function. To improve this process, researchers in Japan developed a new method called Materials Design using Tree Search (MDTS). It identifies the best atomic positions using an algorithm called the Monte Carlo tree search, which has been successfully employed by computer games to determine moves that bring the best possible outcomes.

The team used their method to identify the best way to design silicon-germanium alloy structures, which have either a minimal or maximal ability to conduct heat. Materials with minimal 'thermal conductance' can recover waste heat from industrial processes for use as an energy source. Materials with maximum thermal conductance can draw heat away from computer processing units.

The alloy has a certain number of atomic spaces that can be filled with silicon or germanium. The MDTS algorithm goes through an iterative learning process that computes which of all possible positions is best for placing silicon or germanium in order to achieve the desired degree of thermal conductance.

The team compared their method with another commonly used algorithm for this purpose and found that MDTS was comparable or better in terms of total computational time. Their method also has a "substantial" ability to learn from data.

"MDTS is a practical tool that material scientists can easily deploy in their own problems and has the potential to become a standard choice," the researchers conclude.

Article information:
Thaer Dieb, Shenghong Ju, Kazuki Yoshizoe, Zhufeng Hou, Junichiro Shiomi and Koji Tsuda
"MDTS: automatic complex materials design using Monte Carlo tree search"
Science and Technology of Advanced Materials, 2017; 18:1, 504-527.
http://dx.doi.org/10.1080/14686996.2017.1344083

For further information please contact:
Koji Tsuda,
Graduate School of Frontier Sciences, University of Japan
tsuda@k.u-tokyo.ac.jp

Journal information
Science and Technology of Advanced Materials (STAM), http://www.tandfonline.com/stam is an international open access journal in materials science. The journal covers a broad spectrum of topics, including synthesis, processing, theoretical analysis and experimental characterization of materials. Emphasis is placed on the interdisciplinary nature of materials science and on issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.

For more information about STAM please contact:
Mikiko Tanifuji
Publishing Director
Science and Technology of Advanced Materials
Tanifuji.Mikiko@nims.go.jp

Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.


Aug 23, 2017 19:00 HKT/SGT
Topic: Research and development
Sectors: Nanotechnology, Design/Art, Engineering
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2017 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.


Multimedia
View Image
 

Science and Technology of Advanced Materials
Oct 10, 2017 21:00 HKT/SGT
Simple Biomechanical Test could aid Implant Success
Sept 12, 2017 18:00 HKT/SGT
Japan pivotal in advancing energy storage and conversion materials
Sept 4, 2017 23:00 HKT/SGT
A new path to safer, solid batteries
Sept 4, 2017 01:00 HKT/SGT
From iPad to iPaper
May 10, 2017 22:30 HKT/SGT
Printed 'coffee rings' avoided with nanofibers
Mar 8, 2017 02:30 HKT/SGT
Uncompromising on Organic Solar Cells
Mar 7, 2017 20:10 HKT/SGT
Detecting Mercury with Gold
Feb 28, 2017 18:45 HKT/SGT
Imprinting Technology Improves Transistor-Based Biosensors
Feb 24, 2017 20:30 HKT/SGT
Improving DNA-Detecting Transistors
Nov 9, 2016 07:30 HKT/SGT
The Highs and Lows of Regenerative Medicine
More news >>
 News Alerts
Copyright © 2017 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 800 291 0906 | Beijing: +86 10 8405 3688 | Hong Kong: +852 2217 2912 | Singapore: +65 6304 8926 | Tokyo: +81 3 6721 7212

Connect With us: