Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Thursday, 13 February 2020, 01:00 HKT/SGT
Share:
    

Source: Science and Technology of Advanced Materials
Using bone's natural electricity to promote regeneration
Materials with special electric properties can help promote bone's natural healing processes.

Tsukuba, Japan, Feb 13, 2020 - (ACN Newswire) - Some materials show promise promoting bone regeneration by enhancing its natural electrical properties, according to a review in the journal Science and Technology of Advanced Materials.


Triboelectric nanogenerators (left) and piezoelectric materials (right) are being investigated for their potential to improve bone's natural healing properties. (Copyright: NIMS)


Some solids, including bone, enamel and quartz, form an electric field when deformed. This property, called the piezoelectric effect, happens when a mechanical force pushes atoms closer together or further apart, upsetting the electric balance and causing positive and negative charges to appear on opposite sides of a material.

Scientists discovered that bone was a piezoelectric material in 1957. Since then, they have found that piezoelectricity occurs when bone collagen fibres slide against each other. This leads to the accumulation of charges and the generation of a tiny current, which opens up calcium ion channels in bone cells called osteocytes. This triggers a cascade of signalling pathways that ultimately promote bone formation.

"Piezoelectricity is one of several mechanical responses of the bone matrix that allows bone cells to react to changes in their environment," explain biomedical engineer Zong-Hong Lin of Taiwan's National Tsing Hua University and medical doctor Fu-Cheng Kao of Taiwan's Chang Gung Memorial Hospital, who led the review.

Researchers are seeking to leverage this property to improve bone regeneration and repair. For example, they are exploring materials to fabricate tiny, self-powered electric generators that can be implanted inside or outside bone to stimulate its natural healing processes.

Some teams have significantly accelerated the proliferation and differentiation of mouse embryonic bone-forming cells when using a so-called triboelectric nanogenerator. An electric current is generated when two materials are separated and then brought back into contact. These nanogenerators have been tested with materials such as polydimethylsiloxane, indiumtin oxide, aluminium, and polytetrafluoroethylene. They are showing potential for treating osteoporosis and osteoporosis-related fractures.

Piezoelectric nanogenerators, on the other hand, are made by connecting an electrode to a piezoelectric material on a flexible substrate, and generate a current when force is applied. These nanogenerators have also been shown to promote the proliferation of human bone-forming cells.

Besides nanogenerators, piezoelectric polymers, which have good biocompatibility with human tissues, are showing promise as absorbable screws and pins in severe bone fractures, helping avoid a second surgery for their removal.

Piezoelectric ceramics provide stronger electric currents compared to polymers, but can be toxic. Non-lead-based ceramics, like barium titanate, hydroxyapatite, and zinc oxide are leading candidates for bone scaffolds that promote bone growth and regeneration and for artificial bone substitutes.

Lin and his colleagues expect further research will lead to piezoelectricity-based applications for tissue engineering and bone regeneration.

Further information
Zong-Hong Lin
Taiwan's National Tsing Hua University
[email protected]

Paper
https://doi.org/10.1080/14686996.2019.1693880

About Science and Technology of Advanced Materials Journal
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.

Shunichi Hishita
STAM Publishing Director
[email protected]

Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.


Feb 13, 2020 01:00 HKT/SGT
Topic: Press release summary
Sectors: Nanotechnology
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2020 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.



Science and Technology of Advanced Materials
June 21, 2020 18:00 HKT/SGT
Let the robot swarms begin!
Feb 28, 2020 16:00 HKT/SGT
Bringing the green revolution to electronics
Feb 21, 2020 08:00 HKT/SGT
Gaining more control over fuel cell membranes
Feb 11, 2020 16:00 HKT/SGT
Combined data approach could accelerate development of new materials
Feb 6, 2020 13:00 HKT/SGT
Measuring the wear and tear of metals
Apr 16, 2019 16:00 HKT/SGT
Quantum dot imaging advances
Mar 26, 2019 04:00 HKT/SGT
Electronics at the nanoscale: challenges and opportunities for making metal nanowires
Mar 24, 2019 16:00 HKT/SGT
The Future of Stretchable Electronics
Feb 7, 2019 20:00 HKT/SGT
Progress in Self-assembling Nanomaterials
Jan 7, 2019 14:00 HKT/SGT
Using Big Databases to find Superconductors of the Future
More news >>
 News Alerts
Copyright © 2020 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 800 291 0906 | Beijing: +86 400 879 3881 | Hong Kong: +852 2217 2912 | Singapore: +65 6304 8926 | Tokyo: +81 3 6859 8575

Connect With us: