Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Thursday, 18 October 2012, 13:30 HKT/SGT
Share:
    

Source: A*STAR
A*STAR Scientists Identify Mutation That Causes Skin Hyperproliferation

SINGAPORE, Oct 18, 2012 - (ACN Newswire) - Scientists have identified a mutation in a gene that causes patches of very thick skin to appear on the palms and soles of affected people. This skin disorder is related, albeit in a much milder form, to that of the Indonesian 'Tree Man', Dede Koswara(1). These thick rough skin patches on hands and feet steadily increase in number as a person ages and often coalesce to form larger lesions. In severe cases, these lesions can be painful and debilitating.

A*STAR Scientists Identify Mutation That Causes Skin Hyperproliferation

The team of scientists from A*STAR's Institute of Medical Biology (IMB), in collaboration with hospitals and research centres from the UK, Japan and Tunisia, found that this skin disorder, called punctate palmoplantar keratoderma (punctate PPK), is caused by mutations in the AAGAB gene. Punctate PPK is a rare subtype of palmoplantar keratoderma(2) (PPK), which appears in subtly different forms and seems to have several possible causes. Several families in Singapore are afflicted by different types of PPKs and scientists at A*STAR have also been working with doctors at the National Skin Centre to understand the different forms of this skin disorder.

The identification of the gene mutation will help scientists to better understand the molecular basis of this disease and potentially lead to a suitable treatment. This discovery will improve the classification and diagnosis of PPKs as well as open the door to novel approaches to treatment of skin disorders. These findings were published in the recent advanced online issue of Nature Genetics on 14th October.

The scientists analyzed DNA samples collected from 18 families from Scotland, Ireland, Japan and Tunisia who had punctate PPK. They showed that the AAGAB gene, which encodes the protein p34, was expressed in skin and had a role in the control of cell division. The depletion in AAGAB led to a deficiency in p34, which resulted in increased cell proliferation in the outer layers of skin, the epidermis, because of an increased growth signal coming through the epidermal growth factor receptor (EGFR). The disruption of EGFR signalling is a feature of abnormal cell proliferation and the discovery suggests that PPK may be a benign form of hyperproliferation.

Dr Bruno Reversade, Senior Principal Investigator at IMB, who is a member of the team said, "The study of rare genetic disorders can often provide unexpected links; the phenotype seen in punctate PPK patients bears striking resemblance to common warts, and it is tempting to speculate that HPV could also hijack the same pathways to induce skin hyperproliferation. This discovery also demonstrates that EGFR, a hallmark of skin cancer, is part of the molecular explanation of the overproliferation of lesions in PKK patients."

"Every time we find a new genetic mutation that causes a skin disorder, it helps patients and their families to demystify their condition," said Prof Birgitte Lane, Executive Director of IMB. "With scientists and doctors working towards common goals like this, we find better treatments for more and more of these rare conditions."

Notes for editor:

(1) http://abcnews.go.com/Primetime/popup?id=5536783; Dede Koswara's warts are caused by a combination of the common human papillomavirus (HPV) and a rare immune deficiency
(2) Clinically, three distinct patterns of palmoplantar keratoderma (PPK) may be identified: diffuse, focal, and punctate. http://en.wikipedia.org/wiki/Palmoplantar_keratoderma

The research findings described in this news release can be found on Nature Genetics's website under the title "Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma" by Elizabeth Pohler1,2, Ons Mamai3, Jennifer Hirst4, Mozheh Zamiri5, Helen Horn6, Toshifumi Nomura7, Alan D Irvine8,9, Benvon E Moran8, Neil J Wilson1,2, Frances J D Smith1,2, Christabelle S M Goh1,2, Aileen Sandilands1,2, Christian Cole1,2,10, Geoffrey J Barton10, Alan T Evans11, Hiroshi Shimizu7, Masashi Akiyama12, Akihiro Suehiro13, Izumi Konohana14, Mohammad Shboul15, Sebastien Teissier15, Lobna Boussofara16, Mohamed Denguezli16, Ali Saad3, Moez Gribaa3, Patricia J Dopping-Hepenstal17, John A McGrath18, Sara J Brown1,2, David R Goudie19, Bruno Reversade15,20, Colin S Munro21 & W H Irwin McLean1,2.

1 Department of Dermatology, College of Life Sciences, University of Dundee, Dundee, UK
2 Department of Genetic Medicine, College of Medicine, Dentistry & Nursing, University of Dundee, Dundee, UK
3 Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia.
4 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
5 Department of Dermatology, University Hospital Crosshouse, Kilmarnock, UK
6 Department of Dermatology, Royal Infirmary of Edinburgh, Edinburgh, UK
7 Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
8 Department of Paediatric Dermatology, Our Lady's Children's Hospital, Dublin, Ireland
9 Institute for Molecular Medicine, Trinity College Dublin, Dublin, Ireland
10 Bioinformatics Research Group, Division of Biochemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
11 Department of Pathology, Ninewells Hospital and Medical School, Dundee, UK
12 Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
13 Department of Dermatology, Otsu Municipal Hospital, Otsu, Japan
14 Department of Dermatology, Hiratsuka Municipal Hospital, Hiratsuka, Japan
15 Institute of Medical Biology, A*STAR, Singapore
16 Department of Dermatology and Venerology, Farhat Hached University Hospital, Sousse, Tunisia
17 GSTS Pathology, St. Thomas' Hospital, London, UK
18 St. John's Institute of Dermatology, King's College London, London, UK
19 Human Genetics Unit, Ninewells Hospital and Medical School, Dundee, UK
20 Department of Paediatrics, National University of Singapore, Singapore
21 Department of Dermatology, Southern General Hospital, Glasgow, UK.

The article can be accessed from http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.2444.html .


About the Institute of Medical Biology (IMB)

IMB is one of the Biomedical Sciences Institutes of the Agency for Science, Technology and Research (A*STAR). It was formed in 2007, the 7th and youngest of the BMRC Research Institutes, with a mission to study mechanisms of human disease in order to discover new and effective therapeutic strategies for improved quality of life. From 2011, IMB also hosts the inter-research institute Skin Biology Cluster platform.

IMB has 20 research teams of international excellence in stem cells, genetic diseases, cancer and skin and epithelial biology, and works closely with clinical collaborators to target the challenging interface between basic science and clinical medicine. Its growing portfolio of strategic research topics is targeted at translational research on the mechanisms of human diseases, with a cell-to-tissue emphasis that can help identify new therapeutic strategies for disease amelioration, cure and eradication. For more information about IMB, please visit www.imb.a-star.edu.sg .

About the Reversade Laboratory

Dr. Reversade, a human geneticist and embryologist holds a Senior Principal Investigator position at IMB and an adjunct faculty position at the Department of Paediatrics in the National University of Singapore. He is a Fellow of the Branco Weiss Foundation based at ETH in Switzerland and also the first recipient of the A*STAR Investigatorship, a programme which provides competitive and prestigious fellowships to support the next generation of international scientific leaders, offering funding and access to state-of-the-art scientific equipment and facilities at A*STAR. For more information about Dr. Reversade's laboratory, please visit www.reversade.com .


Contact:
Ong Siok Ming (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6254
Email: ong_siok_ming@a-star.edu.sg


Topic: Research and development
Source: A*STAR

Sectors: Science & Research
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.



A*STAR
Dec 6, 2022 14:00 HKT/SGT
Global pharma giants partner Singapore researchers to boost innovation in biologics and vaccines manufacturing
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
Sept 30, 2021 16:00 HKT/SGT
A*STAR and Local SME Work with Vaccination Centres to Deploy AVID System for Filling Syringes
July 31, 2020 08:00 HKT/SGT
Singapore Cancer Drug ETC-159 Advances Further in Clinical Trials
July 24, 2020 17:00 HKT/SGT
MP Biomedicals and A*STAR Co-Develop Rapid Antibody Test Kit for SARS-CoV-2
Oct 22, 2019 04:00 HKT/SGT
Fujitsu, SMU and A*STAR Launch Digital Platform Experimentation Project using Quantum-Inspired Computing and Deep Learning Technology
June 28, 2019 08:00 HKT/SGT
Singapore's Drug Development Efforts Given Additional Momentum with National Platforms
Apr 5, 2019 18:00 HKT/SGT
Passing of Dr Sydney Brenner, Nobel Laureate, Renowned Pioneer in Molecular Biology, A*Star Senior Fellow
Jan 21, 2019 13:00 HKT/SGT
Branched-Chain Amino Acids Found to Regulate the Development and Progression of Cancer
More news >>
 News Alerts
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: