|
Wednesday, 21 November 2012, 12:00 HKT/SGT | |
| | | | Source: A*STAR | |
|
|
|
This discovery holds the potential to reduce healthcare costs for many common inflammatory diseases such as cancer and diabetes |
SINGAPORE, Nov 21, 2012 - (ACN Newswire) - A*STAR scientists have identified the enzyme, telomerase, as a cause of chronic inflammation in human cancers. Chronic inflammation is now recognized as a key underlying cause for the development of many human cancers, autoimmune disorders, neurodegenerative diseases, and metabolic diseases such as diabetes. This enzyme, which is known to be responsible for providing cancer cells the endless ability to divide, is now found to also jumpstart and maintain chronic inflammation in cancers.
In identifying this enzyme, inflammation can be prevented or reduced, and the common ailments can be alleviated. This discovery has considerable impact on healthcare because developing drugs to target telomerase can greatly reduce healthcare costs.
Currently, the annual costs and expenses associated with cancer and metabolic diseases such as diabetes amount to about $132 billion in the US alone(1). Although many safe and effective anti-inflammatory drugs such as aspirin are currently available on the market, these drugs sometimes have side effects because blocking inflammation is typically detrimental to normal physiology. Hence there exists a need for the development of cost-effective drugs that are targeted, so as to minimize side effects.
This collaborative research was conducted by scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) led by Assoc Prof Vinay Tergaonkar, A*STAR's Genome Institute of Singapore (GIS) and National University of Singapore. Other clinical collaborators include Cancer Science Institute of Singapore and Duke-NUS Graduate Medical School. The research findings were published on Nov. 18, 2012, in the prestigious scientific journal, Nature Cell Biology.
The team identified that telomerase directly regulates the production of inflammatory molecules that are expressed by NF-kB, a known master regulator of chronic inflammation. These molecules are critical for inflammation and cancer progression. By inhibiting telomerase activity in primary cancer cells obtained from patient samples, the scientists found that levels of IL-6, an inflammatory molecule known to be a key driver of human cancers, was reduced in expression as well. This is an important breakthrough that shows how targeting telomerase with drugs could potentially reduce inflammation, and hence get rid of cancer cells.
Dr Tergaonkar said, "These findings provide a unifying explanation for a decade worth of observations from leading laboratories in the field which show that chronic inflammation and telomerase hyperactivity co-exist in over 90 percent of human cancers. What we show that these two activities are actually interdependent. They also may lead to potentially novel drugs that will target a range of human ailments with inflammation as an underlying cause, which range from arthritis to cancer."
Prof Hong Wan Jin, Executive Director of IMCB, said, "The discovery speaks for the exceptional power of identifying novel mechanisms that have translational potential, through close collaborations among scientists in different A*STAR institutes, as well as to bring together both basic and clinical research scientists in Singapore. I am confident that we can expect more discoveries like this from Dr Tergaonkar's team."
(1) National Institute of Diabetes and Digestive and Kidney Diseases
The research findings described in this media release can be found in the 18 November online issue of Nature Cell Biology, under the title, "Telomerase directly regulates NF-kB-dependent transcription" by Arkasubhra Ghosh[1], Gaye Saginc[2], Shi Chi Leow[1], Ekta Khattar[1], Eun Myong Shin[1], Ting Dong Yan[3], Marc Wong[1], Zhizhuo Zhang[4], Guoliang Li[5], Wing-Kin Sung[4,5], Jianbiao Zhou[6], Wee Joo Chng[6], Shang Li[3], Edison Liu[2] and Vinay Tergaonkar[1,7]. [1] Laboratory of NF-kB Signaling, IMCB, Proteos, 138673, Singapore [2] Cancer Biology and Pharmacology, Genome Institute of Singapore, 138672, Singapore [3] Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 169857, Singapore [4] School of Computing, National University of Singapore, 119077, Singapore [5] Computational and Systems Biology, Genome Institute of Singapore, 138672, Singapore [6] Cancer Science Institute of Singapore, 119074, Singapore [7] Correspondence should be addressed to: Vinay Tergaonkar (vinayt@imcb.a-star.edu.sg)
Contact:
Vithya Selvam (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6291
Email: vithya_selvam@a-star.edu.sg
Topic: Research and development
Source: A*STAR
Sectors: Science & Research, BioTech
http://www.acnnewswire.com
From the Asia Corporate News Network
Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
|
|
|
|
|
|
A*STAR |
Dec 6, 2022 14:00 HKT/SGT |
Global pharma giants partner Singapore researchers to boost innovation in biologics and vaccines manufacturing |
June 2, 2022 21:00 HKT/SGT |
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies |
June 2, 2022 21:00 HKT/SGT |
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies |
Sept 30, 2021 16:00 HKT/SGT |
A*STAR and Local SME Work with Vaccination Centres to Deploy AVID System for Filling Syringes |
July 31, 2020 08:00 HKT/SGT |
Singapore Cancer Drug ETC-159 Advances Further in Clinical Trials |
July 24, 2020 17:00 HKT/SGT |
MP Biomedicals and A*STAR Co-Develop Rapid Antibody Test Kit for SARS-CoV-2 |
Oct 22, 2019 04:00 HKT/SGT |
Fujitsu, SMU and A*STAR Launch Digital Platform Experimentation Project using Quantum-Inspired Computing and Deep Learning Technology |
June 28, 2019 08:00 HKT/SGT |
Singapore's Drug Development Efforts Given Additional Momentum with National Platforms |
Apr 5, 2019 18:00 HKT/SGT |
Passing of Dr Sydney Brenner, Nobel Laureate, Renowned Pioneer in Molecular Biology, A*Star Senior Fellow |
Jan 21, 2019 13:00 HKT/SGT |
Branched-Chain Amino Acids Found to Regulate the Development and Progression of Cancer |
More news >> |
|
|
|
|