|
Thursday, 13 December 2012, 11:00 HKT/SGT | |
| | | | Source: A*STAR | |
|
|
|
This discovery may potentially cure patients of multiple myeloma |
SINGAPORE, Dec 13, 2012 - (ACN Newswire) - Singapore scientists have identified FAIM, a molecule that typically prevents cell death, as a potential biomarker to identify an incurable form of cancer in the bone marrow. Patients with this form of cancer usually do not get cured with current standard treatments such as chemotherapy and stem cell transplantation, with an average survival of only about four years. FAIM could thus be a therapeutic target in these patients, as drugs developed to target the molecule could destroy multiple myeloma cells and hence eradicate the cancer.
Multiple myeloma is an incurable cancer of blood cells, which arises due to an uncontrollable accumulation of antibody-producing plasma cells in the bone marrow. In Singapore, about 80 new cases of multiple myeloma are diagnosed every year. Unfortunately, most people who develop multiple myeloma have no clearly identifiable risk factors for the disease but factors such as individuals older than 50 years of age, men and obesity, may predispose one to the cancer.
The scientists discovered that a protein called Fas apoptosis inhibitory molecule (FAIM) can affect the activation of Akt, an important enzyme required for cancer cell proliferation. By silencing the expression of FAIM, the team showed that the myeloma cells could be destroyed. It was also found that this protein was present at higher levels in the plasma cells of these patients as compared to normal individuals, and that higher levels of FAIM correlated to poorer survival outcomes of patients. This is an important breakthrough as it not only identifies FAIM as a useful biomarker of multiple myeloma patients, but also as a good target that drugs can be developed for, in order to get rid of the cancer cells.
This collaborative research was conducted by scientists at A*STAR's Bioprocessing Technology Institute (BTI) led by Prof Lam Kong-Peng, along with clinician-scientists at National University Cancer Institute, Singapore (NCIS) and the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore. The research findings were published in Leukemia on 5 December 2012.
Prof Lam said, "This study adds onto previous studies in the institute demonstrating the utility of FAIM not only in biotechnology but now potentially in the clinic. It is a prime example of how a better understanding of FAIM protein function enables us to first use it to increase yield in biologics manufacturing, and now as a potential prognostic biomarker in the clinic for a deadly human disease such as multiple myeloma. This is really a translation from bench-to-bioreactor and bench-to-bedside."
"Treatment failure due to drug resistance is an important reason why patients with multiple myeloma have a poor outcome. In this study, we identified FAIM as a new biomarker that is associated with poor outcome as well as an important mediator of growth signals in myeloma cells that could lead to drug resistance. The detection of this biomarker will allow us to identify these high risk patients and possibly develop treatments that target FAIM to improve their outcome. This study also underlines the potential for collaborative work between A*STAR research institutes (BTI), CSI Singapore and the National University Cancer Institute of Singapore (NCIS) to perform research that may have significant impact on patients," said Associate Professor Chng Wee Joo, who is Senior Consultant Haematologist at the Department of Haematology-Oncology, NCIS and Senior Principal Investigator at CSI.
Notes for Editor: The research findings described in this media release can be found in the 5 December online issue of Leukemia, under the title, "Fas Apoptosis Inhibitory Molecule (FAIM) is up-regulated by IGF-1 signaling and modulates Akt activation and IRF4 expression in Multiple Myeloma" by Jianxin Huo1, Shengli Xu1,2, Baohong Lin3, Wee-Joo Chng3,4,5, and Kong-Peng Lam1,2,6,7,8 1 Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 2 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 3 Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System 4 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore 5 The Cancer Science Institute, Singapore, National University of Singapore 6 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore 7 Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore 8 Correspondence should be addressed to: Lam Kong-Peng (lam_kong_peng@bti.a-star.edu.sg)
About the Bioprocessing Technology Institute (BTI)
The Bioprocessing Technology Institute (BTI) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1990 as the Bioprocessing Technology Unit, it was renamed the Bioprocessing Technology Institute (BTI) in 2003. The research institute's mission is to develop manpower capabilities and establish cutting-edge technologies relevant to the bioprocessing community. Some of the key research areas include expression engineering, animal cell technology, stem cell research, microbial fermentation, downstream purification and analytics. For more information on BTI, please visit www.bti.a-star.edu.sg .
About the National University Cancer Institute, Singapore (NCIS)
The National University Cancer Institute, Singapore (NCIS) offers a broad spectrum of cancer care and management covering both paediatric and adult cancers, with expertise in prevention, screening, diagnosis, treatment, rehabilitation and palliative care. The Institute's strength lies in the multi-disciplinary approach taken to develop a comprehensive and personalised plan for each cancer patient and his or her family.
NCIS draws on the expertise of its specialists in the fields of haematology-oncology, radiation oncology, gynaecologic oncology, paediatric oncology, surgical oncology, oncology nursing, oncology pharmacy, palliative care, pathology, radiology, medical specialities including gastroenterology and hepatology, infectious diseases, pulmonary and critical care, psychiatry, epidemiology and public health as well as other allied health sciences. For more information, please visit http://www.ncis.com.sg/ .
About the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore
The Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS), supported and funded by the Ministry of Education (MOE) and the National Research Foundation (NRF), provides an opportunity for Singapore to take a leading role in the world-wide charge against cancer using the most technologically advanced strategies, and to firmly position Singapore as one of the major centres for cancer biology and treatment in the Asian community and the world.
The Institute houses a full spectrum of basic and clinical translational facilities and serves as an anchor for research programmes in the Cancer Biology and Stem Cells and the Experimental Therapeutics. These programmes are the platforms for CSI Singapore's focus on key cancer disease areas in gastric, liver, lung and leukaemia; cancers which are endemic to Asian populations. Cancer research involves complex studies supported by advanced cutting edge technologies. The Institute provides sophisticated technology through its core facilities, which support research and provide robust investigational resources for the CSI and wider NUS community.
Contact:
Vithya Selvam (Ms)
Senior Officer, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6826 6291
Email: vithya_selvam@a-star.edu.sg
Topic: Research and development
Source: A*STAR
Sectors: Science & Research, BioTech
http://www.acnnewswire.com
From the Asia Corporate News Network
Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
|
|
|
|
|
|
A*STAR |
Dec 6, 2022 14:00 HKT/SGT |
Global pharma giants partner Singapore researchers to boost innovation in biologics and vaccines manufacturing |
June 2, 2022 21:00 HKT/SGT |
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies |
June 2, 2022 21:00 HKT/SGT |
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies |
Sept 30, 2021 16:00 HKT/SGT |
A*STAR and Local SME Work with Vaccination Centres to Deploy AVID System for Filling Syringes |
July 31, 2020 08:00 HKT/SGT |
Singapore Cancer Drug ETC-159 Advances Further in Clinical Trials |
July 24, 2020 17:00 HKT/SGT |
MP Biomedicals and A*STAR Co-Develop Rapid Antibody Test Kit for SARS-CoV-2 |
Oct 22, 2019 04:00 HKT/SGT |
Fujitsu, SMU and A*STAR Launch Digital Platform Experimentation Project using Quantum-Inspired Computing and Deep Learning Technology |
June 28, 2019 08:00 HKT/SGT |
Singapore's Drug Development Efforts Given Additional Momentum with National Platforms |
Apr 5, 2019 18:00 HKT/SGT |
Passing of Dr Sydney Brenner, Nobel Laureate, Renowned Pioneer in Molecular Biology, A*Star Senior Fellow |
Jan 21, 2019 13:00 HKT/SGT |
Branched-Chain Amino Acids Found to Regulate the Development and Progression of Cancer |
More news >> |
|
|
|
|