Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Friday, 12 April 2013, 23:50 HKT/SGT
Share:
    

Source: NIMS
Rigid Growth Matrix: A Key to Success of Cardiac Tissue Engineering

Los Angeles, Ca. and Tsukuba, Japan, Apr 12, 2013 - (ACN Newswire) - Adult heart muscle is the least regenerative of human tissues. But embryonic cardiomyocytes (cardiac muscle cells) can multiply, with embryonic stem cells providing an endless reservoir for new cardiac tissue. A new study by Nakano, Gimzewski and their co-workers at the University of California, Los Angeles (UCLA) suggests that the elasticity of the physical matrix used for growing cardiomyocytes outside of the body may be critical to the success of cardiac tissue engineering efforts.

Published in the journal Science and Technology of Advanced Materials Vol. 14, p. 025003 (http://iopscience.iop.org/1468-6996/14/2/025003), the study found that a stiff or rigid environment not only enhances the function of existing cardiomyocytes (as has previously been shown), but also promotes the generation of cardiomyocytes from embryonic stem (ES) cells. It may therefor be possible to grow new heart muscle tissue from stem cells by manipulating the stiffness of the medium they're grown in.

In living organisms, a type of adult stem cells called mesenchymal stem cells (MSCs) are extremely sensitive to the elasticity of different materials, when cultured outside the body. For example, soft growing matrices that mimic brain tissue promote the differentiation of MSCs into neurons, while rigid matrices that resemble bone tissue promote the differentiation of MSCs into bone cells.

In this study, the UCLA team examined the role of matrix elasticity on cardiac muscle development using mouse and human embryonic stem cells, which were grown on different substrates of a silicon-based organic polymer that varied in stiffness. The team found that rigid matrices promoted the generation of more cardiomyocytes cells from ES cells. In addition, ES-derived cardiomyocytes displayed functional maturity and synchronization of beating when cultured with cardiomyocytes harvested from a developing embryo.

The team recommends further research on how biophysical cues determine the fate of embryonic stem cells in order to improve cardiac tissue culture methods for regenerative medicine purposes.

Notes:
[1] Armin Arshi, Yasuhiro Nakashima, Haruko Nakano, Sarayoot Eaimkhong, Denis Evseenko, Jason Reed, Adam Z Stieg, James K Gimzewski and Atsushi Nakano, "Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells", Science and Technology of Advanced Materials 14 (2013) 025003, doi:10.1088/1468-6996/14/2/025003.

For more information about this study, please contact:

Atsushi Nakano
Department of Molecular, Cell and Developmental Biology
Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research
Jonsson Comprehensive Cancer Center
Molecular Biology Institute
University of California Los Angeles
Email: anakano@ucla.edu

Press release distributed by ResearchSEA for National Institute for Materials Science.


Topic: Research and development
Source: NIMS

Sectors: Daily Finance, BioTech
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.



NIMS
May 13, 2023 00:00 HKT/SGT
Face-down: Gravity's effects on cell movement
Mar 30, 2015 13:45 HKT/SGT
Wrapping carbon nanotubes in polymers enhances their performance
Mar 25, 2015 11:00 HKT/SGT
Optimising soft-optoelectronics materials through molecular engineering
Mar 12, 2015 12:00 HKT/SGT
Perovskites can Improve Fabrication of Ceramic Electronics
Jan 19, 2015 13:00 HKT/SGT
Wonder Material Silicene Still Stands Just Out of Reach
Oct 31, 2014 14:30 HKT/SGT
3D Printing Incorporates Quasicrystals for Stronger Manufacturing Products
July 14, 2014 14:30 HKT/SGT
Nano-sized Silicon Oxide Electrode for Next Generation Lithium Ion Batteries
Mar 12, 2014 11:30 HKT/SGT
Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range
Jan 28, 2014 14:30 HKT/SGT
Japan-Switzerland Announce Publishing Collaboration on Open-access, Advanced Materials Journal
Nov 8, 2013 10:55 HKT/SGT
World's First Commercial Nanostructured Bulk Metal
More news >>
 News Alerts
Copyright © 2025 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: