Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Tuesday, 2 July 2013, 12:30 HKT/SGT
Share:
    

Source: A*STAR
Genome Institute of Singapore Scientists Discover Molecular Communication Network in Human Stem Cells

SINGAPORE, July 2, 2013 - (ACN Newswire) - Scientists at A*STAR's Genome Institute of Singapore (GIS) and the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin (Germany) have discovered a molecular network in human embryonic stem cells (hESCs) that integrates cell communication signals to keep the cell in its stem cell state. These findings were reported in the June 2013 issue of Molecular Cell.

Human embryonic stem cells have the remarkable property that they can form all human cell types. Scientists around the world study these cells to be able to use them for medical applications in the future. Many factors are required for stem cells to keep their special state, amongst others the use of cell communication pathways.

Cell communication is of key importance in multicellular organisms. For example, the coordinated development of tissues in the embryo to become any specific organ requires that cells receive signals and respond accordingly. If there are errors in the signals, the cell will respond differently, possibly leading to diseases such as cancer. The communication signals which are used in hESCs activate a chain of reactions (called the extracellular regulated kinase (ERK) pathway) within each cell, causing the cell to respond by activating genetic information.

Scientists at the GIS and MPIMG studied which genetic information is activated in the cell, and thereby discovered a network for molecular communication in hESCs. They mapped the kinase interactions across the entire genome, and discovered that ERK2, a protein that belongs to the ERK signaling family, targets important sites such as non-coding genes and histones, cell cycle, metabolism and also stem cell-specific genes.

The ERK signaling pathway involves an additional protein, ELK1 which interacts with ERK2 to activate the genetic information. Interestingly, the team also discovered that ELK1 has a second, totally opposite function. At genomic sites which are not targeted by ERK signaling, ELK1 silences genetic information, thereby keeping the cell in its undifferentiated state. The authors propose a model that integrates this bi-directional control to keep the cell in the stem cell state.

These findings are particularly relevant for stem cell research, but they might also help research in other related fields.

First author Dr Jonathan Goke from Stem Cell and Developmental Biology at the GIS said, "The ERK signaling pathway has been known for many years, but this is the first time we are able to see the full spectrum of the response in the genome of stem cells. We have found many biological processes that are associated with this signaling pathway, but we also found new and unexpected patterns such as this dual mode of ELK1. It will be interesting to see how this communication network changes in other cells, tissues, or in disease."

"A remarkable feature of this study is, how the information was extracted by computational means from the experimental data," said Prof Martin Vingron from MPIMG and co-author of this study.

Prof Ng Huck Hui added, "This is an important study because it describes the cell's signaling networks and its integration into the general regulatory network. Understanding the biology of embryonic stem cells is a first step to understanding the capabilities and caveats of stem cells in future medical applications."

Notes to the Editor:

Research publication
The research findings described in the press release was published in the June 2013 issue of Molecular Cell under the title "Genome-wide Kinase-Chromatin Interactions Reveal the Regulatory Network of ERK Signaling in Human Embryonic Stem Cells".

Authors:
Jonathan Goke[1][2], Yun-Shen Chan[1][3][8], Junli Yan[4][8], Martin Vingron[2] and Huck-Hui Ng[1][3][5][6][7]*
[1] Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
[2] Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
[3] Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore
[4] Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
[5] Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
[6] School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
[7] Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
[8] These authors contributed equally to this work
* Correspondence: NG Huck Hui, nghh@gis.a-star.edu.sg. Tel: +65 6808 8145


About the Genome Institute of Singapore (GIS)

The Genome Institute of Singapore (GIS) is an institute of the Agency for Science, Technology and Research (A*STAR). It has a global vision that seeks to use genomic sciences to improve public health and public prosperity. Established in 2001 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards the goal of individualized medicine. The key research areas at the GIS include Systems Biology, Stem Cell & Developmental Biology, Cancer Biology & Pharmacology, Human Genetics, Infectious Diseases, Genomic Technologies, and Computational & Mathematical Biology. The genomics infrastructure at the GIS is utilized to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact. www.gis.a-star.edu.sg

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy. In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore's manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry. A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR's research entities as well as a growing number of corporate laboratories. www.a-star.edu.sg

About the Max Planck Institute for Molecular Genetics (MPIMG)

The Max Planck Institute for Molecular Genetics (MPIMG) in Berlin, Germany, is one of the leading genome research centres in Europe and belongs to the largest research institutes within the Max Planck Society for the Advancement of Sciences. It comprises four departments, an independent research group as well as a number of independent junior research groups ("Otto Warburg-Laboratory"). Research at the MPIMG concentrates on genome analysis of man and other organisms to contribute to a global understanding of many of the biological processes in the organism, and to elucidate the mechanism behind many human diseases. It is the overall goal of the combined efforts of all MPIMG's groups to gain new insights into the development of diseases on a molecular level, thus contributing to the development of cause-related new medical treatments.
www.molgen.mpg.de

Contact:

Winnie Lim
Genome Institute of Singapore
Office of Corporate Communications
Tel: +65 6808 8013
Email: limcp2@gis.a-star.edu.sg

Patricia Marquardt
Max Planck Institute for Molecular Genetics
Press and Public Relations
Tel.: +49 30 8413 1716
Email: patricia.marquardt@molgen.mpg.de


Topic: Research and development
Source: A*STAR

Sectors: Science & Research, BioTech
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.



A*STAR
Dec 6, 2022 14:00 HKT/SGT
Global pharma giants partner Singapore researchers to boost innovation in biologics and vaccines manufacturing
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
Sept 30, 2021 16:00 HKT/SGT
A*STAR and Local SME Work with Vaccination Centres to Deploy AVID System for Filling Syringes
July 31, 2020 08:00 HKT/SGT
Singapore Cancer Drug ETC-159 Advances Further in Clinical Trials
July 24, 2020 17:00 HKT/SGT
MP Biomedicals and A*STAR Co-Develop Rapid Antibody Test Kit for SARS-CoV-2
Oct 22, 2019 04:00 HKT/SGT
Fujitsu, SMU and A*STAR Launch Digital Platform Experimentation Project using Quantum-Inspired Computing and Deep Learning Technology
June 28, 2019 08:00 HKT/SGT
Singapore's Drug Development Efforts Given Additional Momentum with National Platforms
Apr 5, 2019 18:00 HKT/SGT
Passing of Dr Sydney Brenner, Nobel Laureate, Renowned Pioneer in Molecular Biology, A*Star Senior Fellow
Jan 21, 2019 13:00 HKT/SGT
Branched-Chain Amino Acids Found to Regulate the Development and Progression of Cancer
More news >>
 News Alerts
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: