Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Saturday, 27 July 2013, 02:01 HKT/SGT
Share:
    

Source: A*STAR
Singapore Scientists Discover New Drug Targets for Aggressive Breast Cancer

SINGAPORE, July 27, 2013 - (ACN Newswire) - Scientists at A*STAR's Genome Institute of Singapore (GIS) led in a study that has identified genes that are potential targets for therapeutic drugs against aggressive breast cancer. These findings were reported in the July 2013 issue of PNAS.

Out of the 1.5 million women diagnosed with breast cancer in the world annually, nearly one in seven of these is classified as triple negative. Patients with triple- negative breast cancer (TNBC) have tumours that are missing three important proteins that are found in other types of breast cancer. The absence of these three proteins make TNBC patients succumb to a higher rate of relapse following treatment and have lower overall survival rates. There is currently no effective therapy for TNBC.

Using integrated genomic approaches, GIS scientists led by Dr. Qiang Yu, in collaboration with local and international institutions, set out to search for targets that can be affected by drugs. The scientists discovered that a protein tyrosine phosphatase1, called UBASH3B, is overexpressed in one third of TNBC patients.

Lead author Dr Qiang Yu said, "The identification of target genes is always the most crucial first step towards treating a disease. It is heartening to know that UBASH3B is an important element of the pro-invasive gene network and targeting UBASH3B not only inhibits TNBC invasive growth, but also significantly reduces metastasis."

Tan Tock Seng Hospital consultant surgeon Dr Tan Ern Yu, a collaborator and co- author of the study said, "Some TNBC patients relapse soon after standard treatment while others remain free of disease for a long time. Being able to predict which patients are more likely to relapse is important since these patients may benefit from more aggressive treatments. But currently, doctors are unable to reliably do so. Further validation will show whether UBASH3B can be developed into a means of identifying these high-risk patients as well as a new form of treatment."

Dr Dave Hoon, Director, Department Molecular Oncology at the John Wayne Cancer Institute, USA, and co-author said, "Recent large-scale genomic analysis of breast cancer show that triple negative breast cancer are highly heterogeneous and patients tumors can have different molecular profiles. Unlike more common breast cancers that often express oestrogen, progesterone or HER2 can be targeted by specific agents such as hormone therapy or Herceptin. TNBC is the most difficult breast cancer to treat. The finding can help us develop new approaches for targeted therapy for this highly aggressive breast cancer."

UBASH3B is expressed in high levels not only in American TNBC patients, but also in local Asian patients. This important information shows that the clinical significance of this finding is not limited to one specific ethnic group.


Notes to the Editor:

Research publication The research findings described in the press release was published in the July 2nd, 2013 issue of PNAS (Proceedings of the National Academy of Sciences, USA) under the title "Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis".

Authors:

Shuet Theng Leea,1, Min Fenga,1, Yong Weib,1, Zhimei Lia, Yuanyuan Qiaoa, Peiyong Guanc, Xia Jianga, Chew Hooi Wonga, Kelly Huynhd, Jinhua Wangd, Juntao Lic, K. Murthy Karuturic, Ern Yu Tane, Dave S. B. Hoond, Yibin Kangb, and Qiang Yua,f,g*

a. Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672;
b. Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
c. Information and Mathematical Science, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672;
d. Department Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA 90404;
e. Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433;
f. Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and
g. Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Singapore
1. These authors contributed equally to this study.
* Correspondance: Qiang Yu, yuq@gis.a-star.edu.sg. Tel: (65)6808-8127

(1) Protein tyrosine phosphatases, are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins. These enzymes are key regulatory components in signal transduction pathways and cell cycle control, and are important in the control of cell growth, proliferation, differentiation and transformation. (https://en.wikipedia.org/wiki/Protein_tyrosine_phosphatase)
UBASH3B controls the activity of an important breast cancer gene. The researchers found that deleting this gene expression markedly inhibits TNBC cell invasive growth and lung metastasis in a mouse model. They also showed that patients with TNBC tumours that have high levels of UBASH3B tend to be more likely to have early recurrence and metastasis.


Contact:
Winnie Lim 
Genome Institute of Singapore 
Office of Corporate Communications  
Tel: +65 6808 8013 
Email: limcp2@gis.a-star.edu.sg  


Topic: Research and development
Source: A*STAR

Sectors: Science & Research
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.



A*STAR
Dec 6, 2022 14:00 HKT/SGT
Global pharma giants partner Singapore researchers to boost innovation in biologics and vaccines manufacturing
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
June 2, 2022 21:00 HKT/SGT
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies
Sept 30, 2021 16:00 HKT/SGT
A*STAR and Local SME Work with Vaccination Centres to Deploy AVID System for Filling Syringes
July 31, 2020 08:00 HKT/SGT
Singapore Cancer Drug ETC-159 Advances Further in Clinical Trials
July 24, 2020 17:00 HKT/SGT
MP Biomedicals and A*STAR Co-Develop Rapid Antibody Test Kit for SARS-CoV-2
Oct 22, 2019 04:00 HKT/SGT
Fujitsu, SMU and A*STAR Launch Digital Platform Experimentation Project using Quantum-Inspired Computing and Deep Learning Technology
June 28, 2019 08:00 HKT/SGT
Singapore's Drug Development Efforts Given Additional Momentum with National Platforms
Apr 5, 2019 18:00 HKT/SGT
Passing of Dr Sydney Brenner, Nobel Laureate, Renowned Pioneer in Molecular Biology, A*Star Senior Fellow
Jan 21, 2019 13:00 HKT/SGT
Branched-Chain Amino Acids Found to Regulate the Development and Progression of Cancer
More news >>
 News Alerts
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: