Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Tuesday, 22 March 2016, 13:34 HKT/SGT
Share:
    

Source: Fujitsu Ltd
Fujitsu Develops 400 Gbps Optical Transceiver Architecture
Enables economical, high-bandwidth inter-datacenter communications over 100 km distances

KAWASAKI, Japan, Mar 22, 2016 - (JCN Newswire) - Fujitsu Laboratories Ltd. and Fujitsu R&D Center Co., Ltd. (collectively "Fujitsu") today announced that, to connect multiple datacenters scattered within a metropolitan area with high capacity and at low cost, they have developed a basic architecture for digital-signal processing in optical transceivers transmitting data at 400 gigabits per second over a single wavelength.

Fujitsu have developed new transceiver architecture in which, on the transmitter side, a specially designed reference signal is transmitted, and this is used on the receiving end to effectively compensate for distortion. Fujitsu successfully performed repeaterless transmission tests over a distance of 160 km. This technology accurately compensates for variations in the characteristics of transceiver components and distortions introduced in the transmission path, making it possible to communicate at 400 Gbps per wavelength using inexpensive optical transceiver components.

This technology can be applied to integrated optical transceiver components using silicon photonics, a technology expected to reduce costs and contribute to building next-generation distributed computing platforms that will support 5G mobile networking and diverse IoT services.

Details of this technology are being presented at the Optical Fiber Communication Conference and Exhibition (OFC) 2016, opening March 20 in Anaheim, California.

Background

As 5G mobile networks and the IoT advance, over the next few years it is expected that an era will arrive in which users can access ever more devices and data volumes while enjoying a greater level of real-time services. To achieve that, development work is advancing on distributed computing platforms, in which multiple datacenters are distributed throughout a metropolitan area and connected to work together. There is a need for the fiber-optic networks that will tie these datacenters together to carry more bandwidth, and now R&D activities are underway to go from currently common speeds of 100 Gbps per wavelength, up to 200 Gbps and eventually 400 Gbps.

Technological Issues

Until now, achieving 400 Gbps per wavelength has required the use of expensive components that have been optimized and selected for specific purposes. While there are expectations that the price of components for optical transceivers could be brought down by using cheaper parts or by using CMOS technology or silicon photonics technology, which are being developed in parallel, these all have relatively poor performance compared to expensive components that have been optimized and selected for the specific purpose. Due to piece-to-piece performance variations of the components, economically transmitting over distances of roughly 100 km, the distance needed for communications between datacenters, has not been possible using current methods.

About the Technology

To enable cost savings in optical transceivers, Fujitsu has developed a new optical transceiver architecture in which the receiver compensates for distortions, particularly those from transmitters that are expected to significantly degrade performance.

In this architecture, on the transmitter side, a reference signal that will remain relatively unaffected by the transmitter's own signal distortions along the transmission path is combined with the data signal. This combined signal is then sent, and the receiver can then effectively compensate for the transmitter's signal distortion.

Key features of the technology are as follows.

1. New transmission architecture using a novel reference signal

The typical approach used up to now has been to observe the output signal of the transmitter and compensate for signal distortions there in order to have the transmitter provide the highest quality signal possible. But when transmitting at 400 Gbps, the desired processing accuracy becomes very high, so it is difficult to compensate on the transmitter's end without significant increase of costs for components and circuits. Fujitsu has developed a new architecture in which, by transmitting a specially designed reference signal, it is possible to compensate for the transmitter's signal distortion on the receiver's end.

2. New compensation technology in the receiver

Existing receivers need to carry on phase recovery, which is used to detect the signal after compensating for distortion in the transmission path, but this has been problematic when the effect of the transmitter's distortion is significant. Fujitsu developed technology that, by using the transmitter's own reference signal, makes it possible to perform phase recovery without having to compensate for distortion in the transmission path. Receivers using this technology will first apply phase recovery and transmitter-distortion compensation, and then compensate for distortion in the transmission path, making it possible to recover modulated data even from highly distorted signals.

Results

Fujitsu successfully tested this technology to transmit data at 400 Gbps over fiber optic lines across 160 km, regarded as a sufficient distance for a wide-area network between datacenters in a metropolitan area. Furthermore, this technology can be applied to compensate for variations in performance when using low-cost components, which has been a problem. These results demonstrate that it will be possible to build a next-generation distributed computing platform using low-cost transceivers that operate at 400 Gbps per wavelength.

Future Plans

Fujitsu Laboratories plans to continue testing the technology combined with silicon photonics technology, and aims to have a practical implementation of a 400 Gbps transceiver in 2019.


Contact:
Fujitsu Limited
Public and Investor Relations
Tel: +81-3-3215-5259
URL: www.fujitsu.com/global/news/contacts/

Fujitsu Laboratories Ltd.
ICT Systems Laboratories 
Server Technologies Lab
E-mail: Retimer_ISSCC2015@ml.labs.fujitsu.com


Topic: Press release summary
Source: Fujitsu Ltd

Sectors: Cloud & Enterprise, IT Individual
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.


Fujitsu Ltd Links

http://www.fujitsu.com

https://plus.google.com/+Fujitsu

https://www.facebook.com/FujitsuJapan

https://twitter.com/Fujitsu_Global

https://www.youtube.com/user/FujitsuOfficial

https://www.linkedin.com/company/fujitsu/

Fujitsu Ltd
May 9, 2024 09:41 HKT/SGT
Fujitsu introduces "explainable AI" for use in genomic medicine and cancer treatment planning
May 8, 2024 07:52 HKT/SGT
ServiceNow and Fujitsu announce strategic commitment to launch innovative cross-industry solutions
May 7, 2024 16:53 HKT/SGT
Fujitsu launches mainframe modernization automation service for the Japanese market
Apr 23, 2024 09:25 HKT/SGT
Fujitsu SX Survey reveals key success factors for sustainability
Apr 22, 2024 15:09 HKT/SGT
Fujitsu and METRON collaborate to drive ESG success: slashing energy costs, boosting productivity with new manufacturing industry solutions
Apr 19, 2024 09:17 HKT/SGT
Fujitsu develops technology to convert corporate digital identity credentials, enabling participation of non-European companies in European data spaces
Apr 18, 2024 10:14 HKT/SGT
Fujitsu and Oracle collaborate to deliver sovereign cloud and AI capabilities in Japan
Apr 11, 2024 14:10 HKT/SGT
DOCOMO, NTT, NEC and Fujitsu Develop Top-level Sub-terahertz 6G Device Capable of Ultra-high-speed 100 Gbps Transmission
Apr 9, 2024 09:39 HKT/SGT
Fujitsu AI transforms manufacturing lines with new quality control system for REHAU
Apr 1, 2024 15:17 HKT/SGT
Fujitsu signs MoU with Mitsubishi UFJ Financial Group, Inc. to drive nature positive actions
More news >>
 News Alerts
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | Beijing: +86 400 879 3881 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: