|
|
|
|
Researchers at the University of Tokyo continue to discover new ways to improve the effectiveness of nanoparticles as biomedical tools. |
TSUKUBA, Japan, Nov 1, 2016 - (ACN Newswire) - Nanoparticles are particles that are smaller than 100 nanometers. They are typically obtained from metals and, because of their tiny size, have unique properties that make them useful for biomedical applications. However, without treatment to make their surfaces biologically inert, their effectiveness is severely limited. Researchers led by Kazuhiko Ishihara at the University of Tokyo have pioneered the use of MPC polymers to modify the surfaces of nanoparticles. In a recent article published in the journal Science and Technology of Advanced Materials, they reviewed current ways in which polymeric nanoparticles can be used to transport a type of small nanoparticles called quantum dots into cells.
| Cells can uptake polymer nanoparticles embedding quantum dots covered with cytocompatible phospholipid polymer and cell-penetrating peptides. (c) 2016 Kazuhiko Ishihara, Weixin Chen, Yihua Liu, Yuriko Tsukamoto and Yuuki Inoue. |
MPC polymers are large molecules made from chains of 2-methacryloyloxyethyl phosphorylcholine (MPC). Bioactive nanoparticles whose surfaces have been modified with them can be used as anti-tumor compounds, gene carriers, contrast agents that improve MRI images, and protein detectors. MPC polymers mimic cellular membranes and allow the delivery of bioactive molecules that are normally not very soluble in water or that might produce unwanted biological side effects. When scientists attach MPC polymers to the surface of inorganic nanoparticles, they can make substances that are easily delivered into the blood or other tissue.
Ishihara's group has recently used this process with quantum dots to produce nanoparticles that can outperform traditional organic fluorescent dyes in biomedical imaging. Using a simple solvent-evaporation technique, they were able to fabricate polymer nanoparticles that contained a core of quantum dots enmeshed in the nanoparticle polymer PLA (poly L-lactic acid), which was then surrounded by a layer of an MPC-polymer derivative called PMBN. This combination produced particles that maintained the same levels of fluorescence in a solution after being stored for more than six months at 4 degrees Celsius, and that functioned in environments of varying acidity. While traditional organic dyes lose their fluorescence with repeated illumination, the polymer quantum dot nanoparticles did not.
To be useful, nanoparticles need to be transported into cells. To accomplish this, the team tested the performance of several molecules by fixing them onto the surface of the PMBN/PLA/quantum dot particles. Analysis showed that when the cell-penetrating peptide called R8 - an octapeptide made from eight arginine amino acids - was attached to the nanoparticles, they were taken up by cells within five hours and had no toxic or inflammatory effect on the cells even after three days.
Further testing showed that cells with the polymer quantum dot particles proliferated normally, and that the nanoparticles distributed evenly into each daughter cell upon division. Unlike organic fluorescent dyes, this did not weaken the fluorescence signal even after 30 hours of proliferation. "This was the first report showing the long-term retention of nanoparticles in cells. Preparation of bioactive nanoparticles with MPC polymers can be used to fabricate in-cell nanodevices whose interaction with cells can be completely controlled," notes Ishihara. Article information Ishihara K, Chen W, Liu Y, Tsukamoto Y & Inoue Y (2016). Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. Science and Technology of Advanced Materials, 17:1,300-312. http://dx.doi.org/10.1080/14686996.2016.1190257
Funding information This research was performed through a Grant-in-Aid for Scientific Research on Innovative Areas "Nanomedicine Molecular Science" (#2306) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
For further information please contact: Kazuhiko Ishihara1,2*, 1 Department of Materials Engineering, The University of Tokyo 2 Department of Bioengineering, School of Engineering, The University of Tokyo *E-mail: ishihara@mpc.t.u-tokyo.ac.jp
Journal information Science and Technology of Advanced Materials (STAM, http://www.tandfonline.com/toc/tsta20/current) is an international open access journal in materials science. The journal covers a broad spectrum of topics, including synthesis, processing, theoretical analysis and experimental characterization of materials. Emphasis is placed on the interdisciplinary nature of materials science and on issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications
For more information about STAM please contact: Mikiko Tanifuji Publishing Director Science and Technology of Advanced Materials E-mail: TANIFUJI.Mikiko@nims.go.jp
Press release distributed by ResearchSEA for Science and Technology of Advanced Materials.
Topic: Research and development
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech, Science & Research, BioTech
http://www.acnnewswire.com
From the Asia Corporate News Network
Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
|
|
|
|
|
|
Science and Technology of Advanced Materials |
Oct 25, 2024 23:00 HKT/SGT |
Machine learning can predict the mechanical properties of polymers |
July 30, 2024 20:00 HKT/SGT |
Dual-action therapy shows promise against aggressive oral cancer |
Apr 17, 2024 22:00 HKT/SGT |
A new spin on materials analysis |
Apr 12, 2024 18:00 HKT/SGT |
Kirigami hydrogels rise from cellulose film |
Feb 27, 2024 08:00 HKT/SGT |
Sensing structure without touching |
Nov 21, 2023 07:00 HKT/SGT |
Nano-sized probes reveal how cellular structure responds to pressure |
Nov 17, 2023 10:00 HKT/SGT |
Machine learning techniques improve X-ray materials analysis |
Nov 14, 2023 20:00 HKT/SGT |
A bio-inspired twist on robotic handling |
Oct 17, 2023 08:00 HKT/SGT |
GPT-4 artificial intelligence shows some competence in chemistry |
Aug 24, 2023 09:00 HKT/SGT |
Closing the loop between artificial intelligence and robotic experiments |
More news >> |
|
|
|