Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Monday, 12 March 2018, 10:24 HKT/SGT
Share:
    

Source: Fujitsu Ltd
Fujitsu Applies Deep Learning to Develop Estimation Technology for Optical Transmission Signal Parameters
Essential to building, operating and managing optical networks

TOKYO, Mar 12, 2018 - (JCN Newswire) - Fujitsu Laboratories Ltd., Fujitsu Laboratories of America, Inc., and Fujitsu R&D Center Co., Ltd. today announced the development of technology for a framework to estimate optical signal transmission parameters from optical receivers. The companies have embarked on this development to simplify the building, operating, and managing of optical networks.

Figure 1: Summary of the newly developed technology

Figure 2: Summary of the newly developed technology

The companies have now developed technology that uses deep learning that can be trained on parameters to avoid the impact of systemic errors in optical signal transmission in the course of learning to estimate optical transmission signal parameters, which is an issue unique to optical communication systems, including for symbol rate and optical signal to noise ratio (OSNR). The companies developed an experimental transmission system within Fujitsu Laboratories that emulates an optical network, and with about 10 thousand pieces of data verified that this technology could estimate OSNR with a measurement error of 1%, and could estimate modulation format and symbol rate with a measurement error of 5%.

When problems arise in building or operating an optical network, this technology now makes it possible to accomplish tasks in a matter of minutes that would take an expert several days using specialized measurement equipment. This will contribute to considerably easing the building, operation and management of networks.

Details of this technology will be announced at the Optical Networking and Communication Conference & Exhibition 2018 (OFC 2018), the world's largest international conference on fiber-optic communications, which is being held March 11-15 in San Diego.

Development Background

Communications traffic on the optical networks that sustain an ICT-powered society is expected to increase tremendously alongside the number of devices connected to the internet in the years ahead. In order to accommodate this volume of data, a number of new optical transmission technologies are being adopted one after another in optical networks, and it is believed that networks will become even more diverse and complex. Consequently, demand exists for technologies that will make it easier to build, operate and manage optical networks.

Issues

Previously, when building an optical network, or when problems arose in operating a network, it was necessary to send an expert in this field with expensive and specialized measurement equipment to a worksite, and conduct measurements and tests to determine the cause. In optical networks that aim to boost capacity and distance, the increasing complexity of types of optical transmission signals and device parameter settings means that building the network or fixing issues may require several days, leading to significant issues in quickly building and managing fiber-optic networks. As a result, demand has emerged for the development of technologies that can remotely monitor the status of optical networks in order to resolve these issues. There have been challenges, however, in measuring the information that network operators and managers need without relying on dedicated measurement devices due to the unique optical signal characteristics of newly-deployed optical transmission technologies.

http://www.acnnewswire.com/topimg/Low_SummaryNewlyDevelopedTechnologyF1.jpg
Figure 1: Summary of the newly developed technology

About the Newly Developed Technology

Fujitsu Laboratories, Fujitsu Laboratories of America, and Fujitsu R&D Center have now developed technology to measure the optical signal transmission parameters (signal to noise ratio, modulation format, and symbol rate(1)) needed to build and operate a network from optically transmitted signals in remote optical receivers.

This newly developed technology trains a deep neural network by inputting the signals received by optical receivers into the network. By using the results of measurement equipment to provide supervisory labels, this technology trains the deep neural network to recreate the measurement results produced by the equipment, enabling it to estimate the optical signal transmission parameters. Since systemic errors can arise in signal characteristics such as laser frequency when an optically transmitted signal has been received, if the received data is used for training as-is, the neural network will be trained to specialize on erroneous states. This could increase measurement errors in estimates. As a way to counter this, the new technology virtually generates signals based on optically transmitted signals in varying states, for example, virtually generating multiple data with different laser frequencies, and then combining these to form the training dataset. In so doing, it becomes possible to reflect a variety of situations in the training results, enabling this technology to minimize measurement errors in estimates.

http://www.acnnewswire.com/topimg/Low_SummaryNewlyDevelopedTechnologyF2.jpg
Figure 2: Summary of the newly developed technology

Effects

Fujitsu Laboratories, Fujitsu Laboratories of America, and Fujitsu R&D Center conducted a trial by building a simulated transmission system that models an actual optical network. The trial verified that with 10 thousand pieces of data this technology was capable of estimating OSNR with a measurement error of 1%, and the modulation format and symbol rate with a measurement error of 5%. Using this technology, it is expected that tasks that took an expert using specialized measurement devices several days to complete can now be estimated remotely in a matter of minutes.

Future Plans

Going forward, Fujitsu Laboratories, Fujitsu Laboratories of America, and Fujitsu R&D Center will proceed with trials in an actual network environment, with the goal of commercializing this technology in fiscal 2019 or beyond. The companies will additionally continue investigation aimed at automatic operation of optical networks.

(1) Symbol rate
The speed at which amplitude and phase information can be switched when modulating electrically transmitted data through light.
(2) Digital coherent receiver
A receiver that can handle optical signal phase information with stability, which was an issue with previous coherent receivers, by applying digital signal processing to the optical communication.

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://www.fujitsu.com/jp/group/labs/en/.


Contact:
Fujitsu Laboratories Ltd.
E-mail: onw_dl@dl.jp.fujitsu.com

Fujitsu Limited
Public and Investor Relations
Tel: +81-3-6252-2176
URL: www.fujitsu.com/global/news/contacts/


Topic: Press release summary
Source: Fujitsu Ltd

Sectors: Telecoms, 5G, Electronics, Cloud & Enterprise
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.


Fujitsu Ltd Links

http://www.fujitsu.com

https://plus.google.com/+Fujitsu

https://www.facebook.com/FujitsuJapan

https://twitter.com/Fujitsu_Global

https://www.youtube.com/user/FujitsuOfficial

https://www.linkedin.com/company/fujitsu/

Fujitsu Ltd
Dec 23, 2024 12:30 HKT/SGT
Fujitsu drives chemical industry logistics DX with participation in joint logistics demonstration
Dec 16, 2024 09:20 HKT/SGT
Fujitsu recognized as Leader in IDC MarketScape: Worldwide Digital Workplace Services 2024 Vendor Assessment
Dec 12, 2024 10:06 HKT/SGT
Fujitsu develops video analytics AI agent to support safe, secure, and efficient frontline workplaces
Dec 12, 2024 09:28 HKT/SGT
Fujitsu develops world's first multi-AI agent security technology to protect against vulnerabilities and new threats
Dec 11, 2024 15:36 HKT/SGT
Fujitsu concludes share transfer agreement concerning Fujitsu Communication Services Limited
Dec 11, 2024 09:11 HKT/SGT
Combating customer harassment: Fujitsu, Toyo University and Kokoro Balance Research Institute launch field trial on AI-powered training program
Dec 10, 2024 10:38 HKT/SGT
Fujitsu drives business process improvement at Mitsubishi Electric Engineering using SAP Signavio(R)
Dec 3, 2024 09:48 HKT/SGT
Fujitsu entrepreneurship program spins out first start-up company
Dec 2, 2024 21:07 HKT/SGT
Fujitsu expands global strategic collaboration agreement with AWS to promote customer digital transformation across industries
Nov 26, 2024 09:51 HKT/SGT
Fujitsu develops Policy Twin, a new digital twin technology to maximize effectiveness of local government policies for solving societal issues
More news >>
 News Alerts
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: