Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Tuesday, 22 January 2019, 16:42 HKT/SGT
Share:
    

Source: Fujitsu Ltd
Fujitsu Develops AI Technology to Determine the Necessity of Cyberattack Responses
Offers expert level determinations, shorter evaluation times to minimize damage

KAWASAKI, Japan, Jan 22, 2019 - (JCN Newswire) - Fujitsu Laboratories Ltd. has developed an AI technology that automatically determines whether action needs to be taken in response to a cyberattack.

Figure: Company's response to a cyberattack

When a business network has been hit with a cyberattack, various security appliances detect the attack on the network's servers and devices. Conventionally, an expert in cyberattack analysis then manually investigates and checks the degree of threat, to determine whether action is needed to minimize damage.

To secure the necessary training data needed to develop highly accurate AI technology, Fujitsu Laboratories has now developed a technology that identifies and extracts attack logs, which show the behavior of a cyberattack, from huge amounts of operations logs. It also developed a technology that expands on the small number of training data extracted in a manner that does not spoil attack characteristics. This generates a sufficient amount of training data.

In simulations using these technologies, they achieved a match rate of about 95% in comparison with experts' conclusions regarding the need for action, and they did not miss any attack cases that required a response. The time necessary to reach a conclusion was also shortened from several hours to several minutes.

By using these technologies, countermeasures can quickly be put in place for cyberattacks that have been determined to require action, contributing to business continuity and the prevention of loss. Details of these technologies are being announced at the 36th Symposium on Cryptography and Information Security (SCIS 2019), being held from Tuesday, January 22, to Friday, January 25, in Otsu city, Shiga prefecture, Japan.

Development Background

In recent years, the number of cyberattacks against business networks continues to increase. With targeted attacks(1), which is a type of cyberattack, the attacker uses clever techniques to embed malware(2) that can be controlled remotely in an organization, and then remotely controls devices infected with malware to conduct intelligence activities. In defense, when a company discovers suspicious activities with such monitoring equipment as a security appliance, a security expert manually investigates the attack, and takes time to evaluate danger and risk, then determines the necessity to respond.

The decision to respond needs to be made carefully as the responses themselves may have consequences. For example, attacked business devices may need to be isolated, and the network reconstructed, resulting in operation stoppages that impact businesses.

According to statistics from Japan's Ministry of Economy, Trade and Industry(3), by 2020 there will be a shortage of 193,000 security professionals in Japan. That being said, AI-based automation is expected to rapidly determine the necessity to respond to attack cases, making decisions on the same level as an expert who has advanced knowledge and insight on attacks.

Issues

In order to develop an AI-based model to make determinations, the following issues regarding training on attack information needed to be addressed:

1. The operations logs for normally functioning servers, devices, and network equipment coexist with the attack operations logs, and both logs are accumulated in great abundance. To conduct proper learning with AI, it is necessary to identify the traces of targeted attacks from the large number of logs. However, distinguishing between logs is difficult because intelligence activities via targeted attacks utilize OS commands and other methods.

2. It is extremely difficult to extract attack operations logs from the huge amounts of existing logs, while securing them in large quantities as training data. For AI technologies, it is possible to increase the small amounts of training data through procedures and conversions such as noise processing; however, such simple processing of the training data of targeted attacks can cause the attack characteristics to be lost, making data expansion difficult.

About the Newly Developed Technology

Fujitsu Laboratories has developed technologies to secure sufficient amounts of training data related to targeted attacks required for the creation of highly accurate, AI determination models. Features of the developed technologies are outlined below:

1. Training data extraction technology

Based on the know-how Fujitsu has accumulated in its security-related business and research, as well as from about seven years' worth of actual attack analysis data, Fujitsu Laboratories has built a database of attack patterns that includes commands and parameters linked to intelligence activities of targeted attacks. By using this database, users can accurately identify and extract a series of intelligence activities from the vast amounts of logs.

2. Training data expansion technology

This technology generates simulations of new intelligence gathering activities-a type of targeted attack-without losing attack characteristics. The technology calculates attack levels and identifies the important commands of intelligence activities in the extracted targeted attack, then converts the parameters within the range existing in the attack pattern database. As a result, it becomes possible to expand the training data fourfold.

Effects

Fujitsu Laboratories combined the newly developed technologies with its own Deep Tensor AI technology, and ran evaluative testing on the determination model that had been trained on the new training data. Run in a simulation using about four months of data-12,000 items-the technologies made an approximate 95% match with the findings that a security expert generated through manual analysis, achieving a near equal determination of response necessity.

Furthermore, the technologies were field tested on STARDUST, the Cyber-attack Enticement Platform(4) which is jointly operated with the National Institute of Information and Communications Technology (NICT), using real cyberattacks targeting companies. The technologies automatically determined the attack cases requiring a response, thereby confirming their effectiveness.

With these AI technologies, determinations of the necessity of action, which until now have taken an expert several hours to several days, can be automatically made with high accuracy from tens of seconds to several minutes. Furthermore, by combining these technologies with Fujitsu Laboratories' high-speed forensic technology, which rapidly analyzes the whole picture of the status of damage from a targeted attack, the response sequence, from attack analysis to instructions for action, can be automated, enabling immediate responses to cyberattacks and minimizing damage.

Future Plans

Fujitsu aims to make use of these technologies within its Managed Security Services, as a response platform for cyberattacks.

(1) Targeted attack A cyberattack targeting a specific organization or individual, to relentlessly steal information or destroy systems.
(2) Malware Malicious software.
(3) Statistics from Japan's Ministry of Economy, Trade and Industry Study of Recent Trends and Future Estimates Concerning IT Human Resources, published in 2016 by the Ministry of Economy, Trade and Industry (in Japanese).
(4) STARDUST, the Cyber-attack Enticement Platform a platform, which was developed by the National Institute of Information and Communications Technology (NICT), for the observation of cyberattacks. By enticing attackers to an environment that elaborately simulates organizations such as government and corporations, and observing over the long term the activities of attackers without them noticing, the platform aims to reveal the detailed behavior of attackers once they have penetrated an organization, to gather the information needed to establish cyberattack countermeasures and responses.

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://www.fujitsu.com/jp/group/labs/en/.


Contact:
Fujitsu Laboratories Ltd.
Security Research Laboratory
E-mail: fjsfpsy-ir@ml.labs.fujitsu.com

Fujitsu Limited
Public and Investor Relations
Tel: +81-3-3215-5259
URL: www.fujitsu.com/global/news/contacts/


Topic: Press release summary
Source: Fujitsu Ltd

Sectors: Electronics, Cloud & Enterprise
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.


Fujitsu Ltd Links

http://www.fujitsu.com

https://plus.google.com/+Fujitsu

https://www.facebook.com/FujitsuJapan

https://twitter.com/Fujitsu_Global

https://www.youtube.com/user/FujitsuOfficial

https://www.linkedin.com/company/fujitsu/

Fujitsu Ltd
Dec 23, 2024 12:30 HKT/SGT
Fujitsu drives chemical industry logistics DX with participation in joint logistics demonstration
Dec 16, 2024 09:20 HKT/SGT
Fujitsu recognized as Leader in IDC MarketScape: Worldwide Digital Workplace Services 2024 Vendor Assessment
Dec 12, 2024 10:06 HKT/SGT
Fujitsu develops video analytics AI agent to support safe, secure, and efficient frontline workplaces
Dec 12, 2024 09:28 HKT/SGT
Fujitsu develops world's first multi-AI agent security technology to protect against vulnerabilities and new threats
Dec 11, 2024 15:36 HKT/SGT
Fujitsu concludes share transfer agreement concerning Fujitsu Communication Services Limited
Dec 11, 2024 09:11 HKT/SGT
Combating customer harassment: Fujitsu, Toyo University and Kokoro Balance Research Institute launch field trial on AI-powered training program
Dec 10, 2024 10:38 HKT/SGT
Fujitsu drives business process improvement at Mitsubishi Electric Engineering using SAP Signavio(R)
Dec 3, 2024 09:48 HKT/SGT
Fujitsu entrepreneurship program spins out first start-up company
Dec 2, 2024 21:07 HKT/SGT
Fujitsu expands global strategic collaboration agreement with AWS to promote customer digital transformation across industries
Nov 26, 2024 09:51 HKT/SGT
Fujitsu develops Policy Twin, a new digital twin technology to maximize effectiveness of local government policies for solving societal issues
More news >>
 News Alerts
Copyright © 2025 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: