|
Monday, 6 December 2010, 11:00 HKT/SGT | |
| | | | Source: A*STAR | |
|
|
|
US, European and Japanese companies join A*STAR's Industrial Consortium On Nanoimprint (ICON) to engineer marine life-inspired anti-microbial surfaces for use on ships, lenses and even medical devices. |
SINGAPORE, Dec 6, 2010 - (ACN Newswire) - Taking a leaf from animals like dolphins and pilot whales that are known to have anti-fouling skins, researchers from A*STAR's Industrial Consortium On Nanoimprint (ICON) are using nanotechnology to create synthetic, chemical-free, anti-bacterial surfaces. The surfaces can reduce infections caused by pathogens such as S. aureus and E. coli and can be used on common plastics, medical devices, lenses and even ship hulls. Conventional methods for preventing bacterial surface attachment may use potentially harmful metal ions, nanoparticles, chemicals or UV-radiation.
Nanoimprint technology, a form of nanotechnology, is a simple technique that has been developed by IMRE to make complex nanometer-sized patterns on surfaces to mimic the texture of natural surfaces. This gives the engineered material 'natural' properties such as luminescence, adhesiveness, water-proofing and anti-reflectivity.
The anti-bacterial surfaces research is ICON's second industry-themed project and will involve A*STAR's Institute of Materials Research and Engineering (IMRE) and companies like Nypro Inc (USA), Hoya Corporation (Japan), Advanced Technologies and Regenerative Medicine, LLC (ATRM) (USA), NIL Technology ApS (Denmark) and Akzo Nobel (UK). This is also the first time that 3 local polytechnics, namely Singapore Polytechnic, Temasek Polytechnic and Ngee Ann Polytechnic are working with the consortium partners, under a special arrangement.
"With millions of years of experience behind her, nature has produced some of the most rugged, adaptable life forms. Who better to learn engineering from than Mother Nature?", said Dr Low Hong Yee, IMRE's Director for Research and Innovation and head of the consortium. She added that the anti-microbial surfaces project will demonstrate the versatility of nanoimprinting technology and its benefits to a wide range of industries.
"The strong support given by industry to this second project and to the consortium is a resounding seal of approval of the research, the talent expertise, the technology and its real-world applications", said Prof Andy Hor, Executive Director of IMRE.
Dr Raj Thampuran, A*STAR Science and Engineering Research Council's (SERC) Executive Director added, "Working closely with companies ensures that our R&D and expertise is translated at the earliest possible time and contributes value to the economy. Borrowing intimately from characteristics in nature represents some of the most frontier and innovative ideas in science and engineering. I am pleased that IMRE's research will help companies challenge difficult engineering problems".
"ICON and nanoimprint research gives our own R&D an added dimension and provides us with alternative options on how our existing technology can be applied", said Mr Steve Ferriday, Technical Manager, Worldwide Marine Foul Release, International Paint Ltd (UK), which is part of Akzo Nobel, the world's largest global paints and coatings company. The company recently established their worldwide marine research laboratory in Singapore and is keen to explore how these surfaces might work in a marine environment.
"Chemical additives in biomedical devices can adversely affect different users in different ways. The anti-microbial surfaces derived from nanoimprint technology without the need for additional chemicals and coatings may offer us an alternative solution to this issue", said Mr Tsuyoshi Watanabe, General Manager, R&D Center of Hoya Corporation, a Japanese-based company dealing in advanced electronics and optics technologies. The company has a plant in Singapore producing implanted lenses for the eye.
"Nypro is excited to be a part of this second project. Our participation in such a world class collaborative programme gives Nypro a competitive advantage in bringing innovation to our customers", commented Mr Michael McGee, Director of Technology from Nypro Inc., a leading global solutions provider in the field of manufactured precision plastic products.
"This collaboration will enable the R&D partners to leverage on their areas of expertise to investigate how bacteria attach to specially designed surfaces of different materials. The industrial applications are tremendous and Ngee Ann Polytechnic is excited to be part of the team. Our student interns from various courses at the School of Life Sciences & Chemical Technology will also benefit from working on projects under the supervision of top researchers," said Mrs Tang-Lim Guek Im, Senior Director for Technology Collaboration at Ngee Ann Polytechnic, Singapore.
About the Institute of Materials Research and Engineering (IMRE)
Established in September 1997, IMRE has built strong capabilities in materials analysis, characterisation, materials growth, patterning, fabrication, synthesis and integration. IMRE is an institute of talented researchers equipped with state-of-the-art facilities such as the SERC Nanofabrication and Characterisation Facility to conduct world-class materials science research. Leveraging on these capabilities, R&D programmes have been established in collaboration with industry partners. These include research on organic solar cells, nanocomposites, flexible organic light-emitting diodes (OLEDs), solid-state lighting, nanoimprinting, microfluidics and next generation atomic scale interconnect technology. For more information about IMRE, please visit www.imre.a-star.edu.sg
Contact:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical, business and membership enquiries, please contact:
Dr Low Hong Yee (Chair, ICON)
Senior Scientist
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8133
Email hy-low@imre.a-star.edu.sg
Dr Karen Chong (project on anti-bacteria surfaces)
Senior Research Engineer
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8426
Email karen-chong@imre.a-star.edu.sg
Mr Rick Ong
Industry Development Manager
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6513 1198
Email ongr@imre.a-star.edu.sg
Topic: Research and development
Source: A*STAR
Sectors: Chemicals, Spec.Chem, Science & Nanotech
http://www.acnnewswire.com
From the Asia Corporate News Network
Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
|
|
|
|
|
|
A*STAR |
Dec 6, 2022 14:00 HKT/SGT |
Global pharma giants partner Singapore researchers to boost innovation in biologics and vaccines manufacturing |
June 2, 2022 21:00 HKT/SGT |
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies |
June 2, 2022 21:00 HKT/SGT |
Boehringer Ingelheim Enters Global Licensing Agreement to Develop and Commercialize Innovative Antibodies from A*STAR for Targeted Cancer Therapies |
Sept 30, 2021 16:00 HKT/SGT |
A*STAR and Local SME Work with Vaccination Centres to Deploy AVID System for Filling Syringes |
July 31, 2020 08:00 HKT/SGT |
Singapore Cancer Drug ETC-159 Advances Further in Clinical Trials |
July 24, 2020 17:00 HKT/SGT |
MP Biomedicals and A*STAR Co-Develop Rapid Antibody Test Kit for SARS-CoV-2 |
Oct 22, 2019 04:00 HKT/SGT |
Fujitsu, SMU and A*STAR Launch Digital Platform Experimentation Project using Quantum-Inspired Computing and Deep Learning Technology |
June 28, 2019 08:00 HKT/SGT |
Singapore's Drug Development Efforts Given Additional Momentum with National Platforms |
Apr 5, 2019 18:00 HKT/SGT |
Passing of Dr Sydney Brenner, Nobel Laureate, Renowned Pioneer in Molecular Biology, A*Star Senior Fellow |
Jan 21, 2019 13:00 HKT/SGT |
Branched-Chain Amino Acids Found to Regulate the Development and Progression of Cancer |
More news >> |
|
|
|
|