Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Wednesday, 10 March 2021, 09:45 HKT/SGT
Share:
    

Source: Fujitsu Ltd
Fujitsu Develops AI Model to Determine Concentration During Tasks Based on Facial Expression

KAWASAKI, Japan, Mar 10, 2021 - (JCN Newswire) - Fujitsu Laboratories Ltd. announced the successful development of a new, general purpose AI model for estimating concentration levels that can capture and quantify with high accuracy the degree of concentration when a person is performing various tasks. The model accomplishes this by detecting subtle changes in muscle movements that reveal differences in facial expression that occur when a person is concentrating or not.

Fig. 1 New method overview

Fig. 2 Concentration Estimation Overview

Conventionally, models that use AI to quantify concentration have been created by training algorithms to recognize the expressions and behaviors of people performing specific tasks, such as e-learning. Since facial expressions and behavior differ depending on the tasks involved and the cultural background in which each person grew up, however, the models created had to be individual models, and the challenge was to develop individual AI models for different, specific situations.

Fujitsu has succeeded in the development of an AI solution that can identify common features that indicate concentration or non-concentration not easily influenced by subjects' cultural backgrounds. The AI leverages proprietary technology that detects action units (AU)(1), which express the "units" of movement corresponding to each muscle or each muscle group of the face based on an anatomically based classification system, with the world's highest accuracy(2). The technology captures changes over a short period of a few seconds, such as a tense mouth, and long-term changes over periods of tens of seconds, such as staring intently, with time frames optimized for each action unit. Data was collected from a total of 650 people from a variety of regions including the United States and China, in addition to Japan, engaged in tasks like memorization and searching that require concentration to create a machine learning data set. This was used to create a general purpose AI model that can determine levels of concentration without relying on task-specific behaviors. The effectiveness of this model was subsequently verified using this data set, and it was confirmed that subjects' degree of concentration could be quantitatively estimated with an accuracy rate of over 85%.

Ultimately, this technology delivers AI support that offers the possibility of using accurate data about concentration and attention to improve the efficiency and productivity of peoples' activities online, as more and more aspects of life move online amidst the COVID-19 pandemic.

Newly Developed Technology

Fujitsu has developed a general purpose AI model that quantifies concentration levels without depending on the detection of a specific task and regardless of cultural background by leveraging unique technology that detects facial expressions through Action Units with the world's highest accuracy.

Using proprietary Action Unit detection technology that accurately learns the relative changes of facial expression muscles by training on a pair of images in which the intensity of movements of facial expression muscles differs, it becomes possible to capture changes over a short period of a few seconds, such as a tense mouth, and long-term changes over a period of several tens of seconds, such as staring intently, in time frames optimized for each action unit. A highly accurate concentration estimation AI model was then developed using a new method of integrated concentration estimation (Fig. 1).

This AI model was trained on a data set based on results of memorization and searching tasks that require concentration, drawing from a diverse pool of 650 people from Japan, the U.S., and China. The resulting general purpose AI model can quantify the degree of a subject?s concentration or lack of concentration for a variety of tasks, such as whether someone is concentrating during e-learning, the degree to which someone is immersed in desk work, or the concentration levels of people engaged in plant assembly work, on a range from 0.0 (complete lack of concentration) to 1.0 (maximum concentration).

Outcome

In order to verify the versatility of the AI model, Fujitsu constructed a data set for a total of 650 people from a variety of regions, including in Japan as well as in the U.S. and China. Using the newly developed AI model, the concentration levels of participants in each country was estimated for a series of tasks, and it was possible to estimate the degree of concentration with more than 85% accuracy. This result is comparable to or higher than the results from the latest international academic conferences quantifying the degree of concentration of students on e-learning tasks. It was confirmed that this method works effectively despite possible variations in cultural background.

In addition, when the developed AI model was evaluated using data that included both concentration and non-concentration due to drowsiness, which was recorded by a drive simulator, it showed a high correlation with the correct data labeled based on a national Japanese research organization's index for measuring sleepiness(3), and it was confirmed that the decline in concentration due to sleepiness could be estimated. This confirms that the AI model can be applied to different tasks that it is not specifically trained on.

Future Plans

In the future, in order to expand the application of this technology to various services such as online classes, online meetings, and sales activities, which are expanding globally amidst the "New Normal" , we will further promote the rigorous verification of such technologies from the perspective of AI ethics, with the aim of realizing the practical use of trust-worthy AI technologies.

(1) Action Unit
The movement unit of each part of the face corresponding to about 40 kinds of facial expression muscles defined in the Facial Action Coding System (https://www.paulekman.com/facial-action-coding-system/) proposed based on the anatomical knowledge. Each Action Unit is defined by five levels of intensity corresponding to the movement of the facial muscles.
(2) with the world's highest accuracy
Action Unit recognition technology that won first place in the competition for action unit detection accuracy held at the IEEE International Conference on Automatic Face & Gesture Recognition (FG 2020).
(3) a national Japanese research organization?s index for measuring fatigue
The NEDO Sleepiness Index, which measures sleepiness in a person being monitored by multiple observers. The level of sleepiness is defined by five levels.

About Fujitsu Laboratories

Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Ltd. is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials. For more information, please see: http://www.fujitsu.com/jp/group/labs/en/.


Topic: Press release summary
Source: Fujitsu Ltd

Sectors: Artificial Intel [AI]
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.


Fujitsu Ltd Links

http://www.fujitsu.com

https://plus.google.com/+Fujitsu

https://www.facebook.com/FujitsuJapan

https://twitter.com/Fujitsu_Global

https://www.youtube.com/user/FujitsuOfficial

https://www.linkedin.com/company/fujitsu/

Fujitsu Ltd
Nov 19, 2024 08:02 HKT/SGT
Supercomputer Fugaku retains first place worldwide in HPCG and Graph500 rankings
Nov 18, 2024 11:31 HKT/SGT
Fujitsu and SAP Fioneer enter partnership to accelerate digital transformation in the insurance industry and deliver services that contribute to customers' sustainable business
Nov 15, 2024 09:13 HKT/SGT
Fujitsu collaborates with global suppliers in decarbonization initiative to exchange product-level primary data on CO2 emissions
Nov 13, 2024 11:38 HKT/SGT
SoftBank Corp. and Fujitsu Strengthen Partnership for Realization of AI-RAN Commercialization
Nov 12, 2024 12:57 HKT/SGT
JA Mitsui Leasing and Fujitsu collaborate on simulation-driven field trials to optimize commercial EV adoption and drive decarbonization
Nov 7, 2024 13:51 HKT/SGT
Home of Fujitsu joint conservation project designated as first Nationally Certified Sustainably Managed Natural Site in Okinawa
Nov 5, 2024 16:13 HKT/SGT
Tokyo Stock Exchange and Fujitsu announce renewal of cash equity trading system 'arrowhead4.0'
Nov 1, 2024 11:24 HKT/SGT
Fujitsu's groundbreaking computing technology for accelerating scientific computing wins Japan Patent Office Commissioner's Award
Nov 1, 2024 09:45 HKT/SGT
Fujitsu and AMD to begin strategic partnership to develop more sustainable computing infrastructure intended to accelerate open-source AI initiatives
Oct 30, 2024 12:43 HKT/SGT
Fujitsu and Morinaga Milk Industry jointly develop a simulation system for raw material price fluctuations, speeding up decision-making
More news >>
 News Alerts
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: