|
|
|
|
- Achieved spectral efficiency eight times higher than that of LTE - |
TOKYO, Feb 20, 2017 - (JCN Newswire) - NEC Corporation (TSE: 6701) today announced that it has completed joint verification trials with NTT DOCOMO, Inc. using Massive Multiple Input Multiple Output (MIMO), a core technology for 5G base stations. The trials were conducted in central Tokyo and Kanagawa Prefecture, and used NEC's massive-element Active Antenna System (AAS) supporting the low-SHF band(1).
| The low-SHF band-compatible massive-element AAS used in the trials
|
http://www.acnnewswire.com/topimg/Low_NECNTT.jpg The low-SHF band-compatible massive-element AAS used in the trials
The trials employed the low-SHF band-compatible AAS in the base station for both outdoor environments, where radio waves are reflected or diffracted due to buildings, utility poles, vehicles and people, and indoor environments, which also include many obstacles, such as columns and walls.
NEC's AAS adopts fully-digitized antenna beam control technology, which improves the precision of beam forming. While transmitting beams to the target mobile handsets, it is capable of forming beams that counteract interfering signals using the multi-path(2). It can also form beams that improve communication quality by efficiently combining the multi-path of its own signals with the direct waves.
The features of NEC's AAS enable concurrent communication with several handsets, even though they are close to each other, while maintaining high communication quality. In the trials, NEC proved that use of the AAS can result in improved capacity and quality of communication between a base station and handsets, while confirming that spectral efficiency was reliably maintained at a level roughly eight times higher than that achieved by LTE in indoor environments.(3)
"Thanks to NEC's contribution on the massive-element AAS supporting the low-SHF band, we were able to achieve highly successful outcomes from the trials," said Takehiro Nakamura, Managing Director of the 5G Laboratory at NTT DOCOMO, INC. "We expect NEC to continue pursuing high-speed, large-capacity communication using the low-SFH band and contributing to our commercialization of 5G."
"NEC research into core technologies for 5G, including the massive-element AAS and antenna beam control, will contribute to the successful roll-out of 5G in the near future. Among the high frequency bands, we are working especially hard to put the low-SHF band into practical use, since it is expected to enter into commercial use around 2020," said Nozomu Watanabe, General Manager, Mobile Radio Access Network Division, NEC Corporation. "We will capitalize on the results of these trials as we continue to work together with NTT DOCOMO and other communication carriers, aiming at the practical application of 5G."
This press release includes a part of results of "The research and development project for realization of the fifth-generation mobile communications system" commissioned by The Ministry of Internal Affairs and Communications, Japan.
(1) Super High Frequency band: Radio waves with wavelengths from one to ten centimeters that fall within the microwave band with frequencies from 3GHz to 30GHz. Low-SHF refers to radio waves at frequencies of 3GHz to 6GHz. (2) Signals other than direct waves, such as signals that are reflected or differed due to columns, buildings and other obstacles. (3)Comparing with 2 spatial multiplexing in LTE, as of February 20, 2017, based on NEC research.
Contact:
NEC
Seiichiro Toda
s-toda@cj.jp.nec.com
+81-3-3798-6511
Topic: Press release summary
Source: NEC Corporation
Sectors: Wireless, Apps
http://www.acnnewswire.com
From the Asia Corporate News Network
Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
|
|
|
|
|
|
NEC Corporation |
Dec 19, 2024 11:02 HKT/SGT |
NEC Completes new Asia Pacific submarine cable |
Dec 18, 2024 16:12 HKT/SGT |
NEC Receives Telecom Review's Global Excellence Award for Innovative Telecom B2B/ Enterprise Network Solutions |
Dec 12, 2024 15:27 HKT/SGT |
NEC Announces Interim Results from Phase 1 Clinical Trial of NECVAX-NEO1, an AI-Driven Personalized Oral Cancer Vaccine, at ESMO Immuno-Oncology Congress 2024 |
Dec 9, 2024 13:06 HKT/SGT |
NEC begins sale of 100G QSFP28 ZR4 single-fiber bi-directional optical transceiver |
Nov 29, 2024 14:27 HKT/SGT |
JAL and NEC Test AI-Powered Carry-On Baggage Analysis Solution |
Nov 20, 2024 14:30 HKT/SGT |
Start of Demonstration Test of Two-Phase Direct-to-Chip Cooling in the Air-Cooled Data Center |
Nov 18, 2024 16:29 HKT/SGT |
World's First Successful Trial of Quantum Tokens Created Using Quantum Technology |
Nov 13, 2024 11:05 HKT/SGT |
Predictive Heart Monitoring Startup, GPx, Secures New Investment From NEC X; Joins Elev X! Boost Venture Studio Program |
Nov 13, 2024 10:16 HKT/SGT |
NEC receives order for next-generation supercomputer system from Japan's National Institutes for Quantum Science and Technology and National Institute for Fusion Science |
Nov 12, 2024 18:25 HKT/SGT |
NEC participates in COP29 climate change conference |
More news >> |
|
|
|
|