Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Monday, 28 June 2010, 13:23 HKT/SGT
Share:
    

Source: NEC Corporation
NEC Technology Simulates LSI Package Warping and Soldering

TOKYO, June 28, 2010 - (ACN Newswire) - NEC Corporation (NEC; TSE: 6701), a leading network, communications and information technology company, announced today the development of technologies that enable quick and accurate simulations of warping package boards as well as the behavior of solder bumps that result from the reflow process.

These simulation technologies use multi-layer beam theory (*1) to quickly estimate the warping that takes place in the high temperature reflow process for semiconductor device packages. The behavior of molten solder bumps can be visualized with a particle modeling that uses the molecular dynamics method (*2). This visualization of molten soldering is used for quick warping estimations, in which the simulated shapes of molten soldering are used to accurately implement the actual shape of the soldering, which results in highly reliable connection design techniques.

These technologies also enable technicians to reproduce and analyze simulations of the primary factors behind failed soldering connections (failed, thin, short connections, etc.) and to optimize the production processes and the structures of devices. Therefore, these technologies enable overall development to be improved by reducing the number of manufacturing test trials, improving the reliability of soldered connections through augmented structural designs and enhancing the yield rate from manufacturing process designs.

These newly developed simulation technologies feature the following:

1.Fast estimation of package warping that takes place during the reflow process
The multi-layer beam theory is used in order to achieve fast estimation of the warping that takes place on multi-layered packages during the LSI package manufacturing processes. The time required for one round of analysis of multi-layer beams of whole packages exposed to temperature changes has been reduced to anywhere from 1/60 to 1/90 of the time that is required when using the conventional finite element method (FEM, *3) of analyzing the minute warping of net grids. This has resulted in the analysis of a wide variety of design conditions and the ability to quickly identify the optimum multi-layer structure and reflow conditions. Moreover, these technologies may be applied in order to estimate the warping of printed circuit boards.

2.Visualization of molten soldering through the molecular dynamics method
These technologies enable robust and easily managed liquid solder droplet simulations by treating them as aggregations of particles, which represents a part of solder, within the molecular dynamics method, which is difficult to simulate using the meshing method due to high calculation costs and modeling skills. These technologies also facilitate the visualization of molten soldering throughout varying temperatures of the reflow process package warping.
Recent increases in the density of electronics equipment have been characterized by packages for semiconductors and other devices that feature thinner, multi-terminal and narrow pitches. Additionally, the introduction of lead-free soldering with a high melting point and low wettablity has caused the failure of soldering connections and increased package warping in the reflow process.

Presently, the skill and experience of veteran technicians are relied on for the structural and manufacturing process design of soldered connecting parts for thin mobile electronics. However, as the progress of multi-function devices has made packages more complex and diversified, it has become increasingly difficult with these traditional methods to produce optimal designs. Furthermore, the demand is growing for analysis technologies that support structure and manufacturing process design due to the need for assuring the quality of solder connections of LSI packages, shortening the lead time for the design process, and reducing development costs.

These simulation technologies were developed in response to these evolving needs of world markets. Looking forward, NEC will continue to proactively drive the wide-spread use of simulation technologies in support of highly reliable hardware product design.

*1) Multi-layer Beam Theory:
Multi-layer beam theory treats printed circuit boards and packages as a multi-layer beam and estimates the stress, strain, and warping due to temperature changes.

*2) Molecular Dynamics Method
The Molecular dynamics method applies Newton's equation of motion (F=ma) to each particle and numerically tracks the movement (position, speed, strength) of each particle.

*3) Finite Element Method (FEM):
FEM is a numerical analysis method to approximately solve differential equations. This method estimates the entire behavior of objects that possesses complex shapes/properties by partitioning them into approximations of simple small areas (components).


Contact:
Joseph Jasper
NEC Corporation
+81-3-3798-6511 
E-Mail: j-jasper@ax.jp.nec.com


Topic: Press release summary
Source: NEC Corporation

Sectors: Electronics, IT Individual
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.


NEC Corporation Links

http://www.nec.com

https://www.facebook.com/nec.global/

https://twitter.com/NEC_corp

https://www.youtube.com/user/NECglobalOfficial

https://www.linkedin.com/company/nec/

NEC Corporation
Sept 5, 2025 10:20 HKT/SGT
NEC participates in Locked Shields 2025 hosted by the NATO Cooperative Cyber Defence Centre of Excellence
Sept 4, 2025 10:15 HKT/SGT
NEC to begin proof of concept for early earthquake detection and analysis in Colombia
Aug 27, 2025 21:57 HKT/SGT
NEC develops AI technology for digitalizing work tasks without the need for pre-training and utilizing video from multiple cameras covering wide area worksites
Aug 25, 2025 16:30 HKT/SGT
NEC technology predicts sudden traffic congestion in real time using optical fiber cables
Aug 21, 2025 19:32 HKT/SGT
NEC digital technologies to empower small-scale producers in Africa in partnership with IFAD
Aug 21, 2025 18:27 HKT/SGT
NEC signs Memorandum of Cooperation with the Senegalese government, CFPT-SJ, JICA, and four Japan-based companies for vocational training in Senegal
Aug 21, 2025 09:39 HKT/SGT
NEC develops robot control technology using AI to achieve safe, efficient autonomous movement even at sites with many obstacles
Aug 20, 2025 14:53 HKT/SGT
NEC collaborates with WFP to strengthen cooperative development in Africa
Aug 19, 2025 10:33 HKT/SGT
NEC and ClimateAi Develop Conceptual Model to Promote Climate Change Adaptation in Agriculture
Aug 18, 2025 13:38 HKT/SGT
UNFPA and NEC Collaborate to Build Beneficiary Information Management and e-Voucher System
More news >>
 News Alerts
Copyright © 2025 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: