Top Page | English | 简体中文 | 繁體中文 | 한국어 | 日本語
Friday, 24 January 2020, 10:05 HKT/SGT
Share:
    

Source: NEC Corporation
NEC Develops Millimeter-wave Distributed Antenna Radio Unit Improving the Channel Quality for Indoor 5G Applications

TOKYO, Jan 24, 2020 - (JCN Newswire) - NEC Corporation (TSE: 6701), a leader in the integration of IT and network technologies, today announced the development of millimeter-wave(1) distributed antennas for the efficient use of 5G millimeter-wave spectrum (28GHz band) for the first time. Demonstration experiments were conducted with this technology at the NEC Tamagawa Plant in 2019, where the capability of high-speed, large-capacity communications with stable propagation channel quality was confirmed.

Figure 1: Conceptual diagram of a millimeter-wave distributed antenna in a building

Figure 2: Communication quality simulating an office(4) (Red arrows indicate the antenna position, blue indicates high communication quality, and yellow indicates the portion of deterioration caused by shielding or interference)

In terms of background, 5G uses millimeter waves, which have frequency bands more than 10 times higher than 4G, and are expected to contribute to a wide range of services that provide high-speed, large-capacity, low-latency, and multiple connections. Due to the nature of millimeter waves, however, communication quality is susceptible to deterioration due to shielding and interference caused by obstacles and installations. As a result, it is necessary to establish a large number of base stations to ensure communication quality. However, in places with limited space, such as homes and workplaces, there is also a need to downsize base stations.

To resolve these challenges, NEC developed digital coordination technologies to connect distributed antenna elements for wireless satellite stations (RU: Radio Unit) of 5G millimeter-wave (28GHz-band) base stations. Moreover, NEC resolved the issues of shielding and diffraction of propagation paths for interior mobile communications using millimeter-wave communication. This technology applies NEC's proprietary massive MIMO(2), which combines a large number of independent antennas, in order to deliver millimeter-wave high-speed, high-capacity communications with stable communication quality.

In addition, by connecting distributed antennas to control units using a frequency multiplexer that consolidates multiple signals, NEC resolved issues related to attenuation, synchronization and power supply that might arise when connecting antennas and control units with high-frequency cable or optical cable, thereby helping to facilitate the installation of antennas. Furthermore, NEC has produced smaller antennas (approximately 5cmx2cm with 8 components) by designing and implementing circuits cultivated through NEC's iPASOLINK microwave communication system.

NEC's demonstration experiment consisted of a system with eight antennas, a control unit for controlling antennas, and a baseband processing unit that controls antennas.

In the experiment, NEC applied digital beamforming(3), which had been developed in the sub-6GHz and millimeter bands, to 28GHz band antennas. By combining and multiplying the space of radio waves, NEC achieved not only high-speed, high-capacity communication, but also stabilized the propagation path. NEC also achieved stable communications in difficult propagation environments, such as shadowing by walls, interference from reflective waves, and environments where multiple terminals are closely linked.

Going forward, NEC will continue to conduct demonstration tests in various environments, such as office buildings, commercial facilities, and factories, with the aim of commercializing this technology by the end of 2020.

NEC will announce details of a feasibility study on this technology at IEEE Radio Wireless Week 2020 held in San Antonio, Texas, USA, from January 26 to 29. NEC will also exhibit this technology at a MWC Barcelona 2020 in Barcelona, Spain, from February 24 to 27.

Under NEC's Mid-term Management Plan 2020, which covers the three-year period to FY2020, NEC is promoting service businesses in new areas that leverage the strengths of its network technologies. Through these developments, NEC will accelerate the provision of "NEC Smart Connectivity"(5) utilizing network flexibly to dynamically link data produced by people and goods across industries, and to create new social value.

(1) Millimeter-wave
Compared to sub-6GHz, challenges at the millimeter-wave level include large attenuation per distance and attenuation by shielding due to shorter wave length, divergence difficulty, and the large influence of reflection and intervention.
(2) Massive MIMO
This is an enhancement of Multiple Input Multiple Output that utilizes the flexibility of many independent transceivers to simultaneously improve spatial multiplexing and the quality stability of radio channels.
Reference:
NEC develops compact and lightweight massive-element active antenna system for 5G communications, https://bit.ly/38xHtCS
NEC succeeds in simultaneous digital beamforming that supports 28 GHz band for 5G communications, https://bit.ly/38ADC80
(3) Digital beamforming
A technology that focuses on a particular direction by spatially combining and multiplying radio waves. This reduces radio interference between the base station and the terminal, thereby providing a more stable radio wave.
(4) Simulation using an index (EVM: Error Vector Magnitude) to measure the quality of digital-modified signals.
Reference:
Definition of EVMs (3GPP Standard), https://bit.ly/2Rp5JBA
(5) NEC Smart Connectivity
Network services that draw on NEC's accumulated expertise and track record in network technologies and related solutions. https://bit.ly/2TRXNKt


Topic: Press release summary
Source: NEC Corporation

Sectors: Telecoms, 5G, Wireless, Apps
http://www.acnnewswire.com
From the Asia Corporate News Network


Copyright © 2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.


NEC Corporation Links

http://www.nec.com

https://www.facebook.com/nec.global/

https://twitter.com/NEC_corp

https://www.youtube.com/user/NECglobalOfficial

https://www.linkedin.com/company/nec/

NEC Corporation
Dec 9, 2024 13:06 HKT/SGT
NEC begins sale of 100G QSFP28 ZR4 single-fiber bi-directional optical transceiver
Nov 29, 2024 14:27 HKT/SGT
JAL and NEC Test AI-Powered Carry-On Baggage Analysis Solution
Nov 20, 2024 14:30 HKT/SGT
Start of Demonstration Test of Two-Phase Direct-to-Chip Cooling in the Air-Cooled Data Center
Nov 18, 2024 16:29 HKT/SGT
World's First Successful Trial of Quantum Tokens Created Using Quantum Technology
Nov 13, 2024 11:05 HKT/SGT
Predictive Heart Monitoring Startup, GPx, Secures New Investment From NEC X; Joins Elev X! Boost Venture Studio Program
Nov 13, 2024 10:16 HKT/SGT
NEC receives order for next-generation supercomputer system from Japan's National Institutes for Quantum Science and Technology and National Institute for Fusion Science
Nov 12, 2024 18:25 HKT/SGT
NEC participates in COP29 climate change conference
Nov 8, 2024 09:31 HKT/SGT
Transgene and NEC Present New Data Confirming Clinical Proof of Principle for Neoantigen Cancer Vaccine, TG4050, in Head & Neck Cancer at SITC 2024
Nov 7, 2024 10:40 HKT/SGT
NEC and NEC Bio publish foundational work on T Cell Receptor engineering using proprietary generative AI at the Society for Immunotherapy of Cancer annual meeting
Oct 28, 2024 16:05 HKT/SGT
NEC launches new end to end private 5G solution with Cisco
More news >>
 News Alerts
Copyright © 2024 ACN Newswire - Asia Corporate News Network
Home | About us | Services | Partners | Events | Login | Contact us | Privacy Policy | Terms of Use | RSS
US: +1 214 890 4418 | China: +86 181 2376 3721 | Hong Kong: +852 8192 4922 | Singapore: +65 6549 7068 | Tokyo: +81 3 6859 8575

Connect With us: